[1] MOLINO A, CHIANESE S, MUSMARRA D. Biomass gasification technology: The state of the art overview[J]. Journal of energy chemistry, 2016, 25(1): 10-25. DOI: 10.1016/j.jechem.2015.11.005.
[2] 孙立, 张晓东. 生物质热解气化原理与技术[M]. 北京: 化学工业出版社, 2013.
[3] MILNE T A, ABATZAGLOU N, EVANS R J. Biomass gasifier “tars”: their nature, formation, and conversion[R]. NREL/TP-570-25357. Colorado, USA: National Renewable Energy Laboratory, 1998.
[4] LI C S, SUZUKI K. Tar property, analysis, reforming mechanism and model for biomass gasification-An overview[J]. Renewable and sustainable energy reviews, 2009, 13(3): 594-604. DOI: 10.1016/j.rser.2008.01.009.
[5] BRANDT P, HENRIKSEN U B. Decomposition of tar in gas from updraft gasifier by thermal cracking[C]// Proceedings of First World Conference on Biomass for Energy and Industry. Sevilla, Spain: James & James, 2000.
[6] BALDWIN R M, MAGRINI-BAIRA K A, NIMLOS M R, et al. Current research on thermochemical conversion of biomass at the national renewable energy laboratory[J]. Applied catalysis B: environmental, 2012, 115-116: 320-329. DOI: 10.1016/j.apcatb.2011.10.033.
[7] 王磊, 吴创之, 陈平, 等. 生物质气化焦油在高温木炭床上的裂解试验研究[J]. 可再生能源, 2005(5): 30-34. DOI: 10.3969/j.issn.1671-5292.2005.05.009.
[8] 阴秀丽, 赵增立, 徐冰燕, 等. 白云石和石灰石对废轮胎热解产物的影响[J]. 燃料化学学报, 2001, 29(3): 283-285. DOI: 10.3969/j.issn.0253-2409.2001.03.020.
[9] MIAO Y L, XUE J, XIA F J, et al. Utilization of porous dolomite pellets for the catalytic decomposition of acetic acid[J]. Biomass and bioenergy, 2010, 34(12): 1855-1860. DOI: 10.1016/j.biombioe.2010.07.019.
[10] 巩伟, 阴秀丽, 谢建军, 等. 多孔白云石颗粒催化裂解生物质焦油的动力学研究[J]. 太阳能学报, 2010, 31(7): 800-805.
[11] 薛俊, 缪冶炼, 阴秀丽, 等. 多孔镍/白云石颗粒对生物质气化焦油裂解的催化性能[J]. 工业催化, 2009, 17(10): 45-50. DOI: 10.3969/j.issn.1008-1143.2009.10.010.
[12] 薛俊, 缪冶炼, 夏发俊, 等. 生物质气化焦油裂解用颗粒催化剂的再生性能[J]. 工业催化, 2009, 17(9): 71-75. DOI: 10.3969/j.issn.1008-1143.2009.09.015.
[13] 郎林, 谢建军, 杨文申, 等. 改性陶瓷管高温净化生物质粗燃气的研究[J]. 工程热物理学报, 2014, 35(8): 1665-1668.
[14] 谢建军, 郎林, 杨文申, 等. 高温陶瓷净化生物质气化粗燃气粉尘试验研究[J]. 化工进展, 2017, 36(8): 2903-2909. DOI: 10.16085/j.issn.1000-6613.2016-2374.
[15] 林娜, 郎林, 刘华财, 等. 生物质气化燃气中固体颗粒物的恒温临氧热解机理研究[J]. 燃料化学学报, 2018, 46(3): 290-297. DOI: 10.3969/j.issn.0253-2409.2018.03.005.
[16] 谢建军, 徐彬, 阴秀丽, 等. 流光电晕放电净化粗燃气焦油及粉尘研究进展[J]. 新能源进展, 2016, 4(3): 232-239. DOI: 10.3969/j.issn.2095-560X.2016.03.011.
[17] 徐彬, 谢建军, 阴秀丽, 等. 流光电晕裂解焦油模型化合物的动力学模拟[J]. 太阳能学报, 2018, 39(11): 3178-3184.
[18] XU B, XIE J J, ZHAN H, et al. Removal of toluene as a biomass tar surrogate in a catalytic nonthermal plasma process[J]. Energy & fuels, 2018, 32(10): 10709-10719. DOI: 10.1021/acs.energyfuels.8b02444.
[19] XIE J, ZHOU Y, ZHOU Z, et al. Demonstration of a combined heat and power plant through biomass gasification[C]//Presented at the The Sixth International Symposium on Gaisification and Its Application. October 25-28, 2018, Chengdu, China, 2018.
[20] 许光文, 纪文峰, 万印华, 等. 轻工业纤维素生物质过程残渣能源化技术[J]. 化学进展, 2007, 19(7/8): 1164-1176.
[21] 廖艳芬, 马晓茜. 生物质能利用技术控制污染物排放的作用[J]. 环境污染与防治, 2006, 28(5): 369-372, 387. DOI: 10.3969/j.issn.1001-3865.2006.05.015.
[22] 冯宜鹏, 王小波, 赵增立, 等. 烘焙预处理对高含氮木质废弃物气流床气化特性与含氮污染物分布的影响研究[J]. 太阳能学报, 2018, 39(7): 1908-1916.
[23] XU G W, MURAKAMI T, SUDA T, et al. Efficient gasification of wet biomass residue to produce middle caloric gas[J]. Particuology, 2008, 6(5): 376-382. DOI: 10.1016/j.partic.2008.07.004.
[24] ZHANG J W, WANG Y, DONG L, et al. Decoupling gasification: approach principle and technology justification[J]. Energy & fuels, 2010, 24(12): 6223-6232. DOI: 10.1021/ef101036c.
[25] 王磊, 沈胜强, 师新广, 等. 生物质气化过程中燃料氮迁移影响因素实验研究[J]. 太阳能学报, 2007, 28(12): 1365-1369. DOI: 10.3321/j.issn:0254-0096.2007.12.015.
[26] 许光文, 高士秋, 余剑, 等. 解耦热化学转化基础与技术[M]. 北京: 科学出版社, 2016.
[27] 杨会凯, 常国璋, 张晓鸿, 等. 固定床生物质热解气化过程N迁移实验研究[J]. 现代化工, 2016, 36(11): 116-120.
[28] 张晓鸿, 詹昊, 阴秀丽, 等. 富氮生物质原料热解过程中NOx前驱物释放特性研究[J]. 燃料化学学报, 2016, 44(12): 1464-1472. DOI: 10.3969/j.issn.0253-2409.2016. 12.008.
[29] ZHAN H, YIN X L, HUANG Y Q, et al. NOx precursors evolving during rapid pyrolysis of lignocellulosic industrial biomass wastes[J]. Fuel, 2017, 207:438-448. DOI: 10.1016/j.fuel.2017.06.046.
[30] ZHAN H, ZHUANG X Z, SONG Y P, et al. Insights into the evolution of fuel-N to NOx precursors during pyrolysis of N-rich nonlignocellulosic biomass[J]. Applied energy, 2018, 219: 20-33. DOI: 10.1016/j.apenergy.2018.03.015.
[31] 詹昊, 阴秀丽, 黄艳琴, 等. 药渣热解过程NOx前驱物生成特征及规律研究[J]. 燃料化学学报, 2017, 45(3): 279-288. DOI: 10.3969/j.issn.0253-2409.2017.03.004.
[32] 詹昊, 张晓鸿, 宋艳培, 等. 富N生物质原料气化过程NOx前驱物生成特性及规律[J]. 燃料化学学报, 2018, 46(1): 34-44. DOI: 10.3969/j.issn.0253-2409.2018.01.005.
[33] ZHAN H, ZHUANG X Z, SONG Y P, et al. Evolution of nitrogen functionalities in relation to NOx precursors during low-temperature pyrolysis of biowastes[J]. Fuel, 2018, 218: 325-334. DOI: 10.1016/j.fuel.2018.01.049.
[34] ZHAN H, ZHUANG X Z, SONG Y P, et al. Step pyrolysis of N-rich industrial biowastes: Regulatory mechanism of NOx precursor formation via exploring decisive reaction pathways[J]. Chemical engineering journal, 2018, 344: 320-331. DOI: 10.1016/j.cej.2018.03.099.
[35] ZHAN H, YIN X L, HUANG Y Q, et al. Comparisons of Formation Characteristics of NOx Precursors during Pyrolysis of Lignocellulosic Industrial Biomass Wastes[J]. Energy & fuels, 2017, 31(9): 9557-9567. DOI: 10.1021/acs.energyfuels.7b01559.
[36] 庄修政, 詹昊, 黄艳琴, 等. 两类药渣的水热提质效果及其燃烧特性研究[J]. 燃料化学学报, 2018, 46(8): 940-949.
[37] ZHUANG X Z, HUANG Y Q, SONG Y P, et al. The transformation pathways of nitrogen in sewage sludge during hydrothermal treatment[J]. Bioresource technology, 2017, 245: 463-470. DOI: 10.1016/j.biortech.2017.08.195.
[38] ZHUANG X Z, HUANG Y Q, LIU H C, et al. Relationship between physicochemical properties and dewaterability of hydrothermal sludge derived from different source[J]. Journal of environmental sciences, 2018, 69: 261-270. DOI: 10.1016/j.jes.2017.10.021.
[39] 林均衡, 杨文申, 阴秀丽, 等. 矿化垃圾衍生燃料热解过程HCl与H2S析出规律[J]. 燃料化学学报, 2018, 46(2): 152-160.
[40] 李学琴, 时君友, 雷廷宙, 等. 生物质秸秆气化灰渣基多元素农作物复合肥的研制[J]. 吉林农业大学学报, 2016, 38(5): 605-612. DOI: 10.13327/j.jjlau.2016.3354.
[41] EBERHARDT T L, PAN H. Analysis of the fly ash from the processing of wood chips in a pilot-scale downdraft gasifier: Comparison of inorganic constituents determined by PIXE and ICP-AES[J]. Biomass and bioenergy, 2013, 51: 163-168. DOI: 10.1016/j.biombioe.2013.01.020.
[42] SCHETTINO M A S, HOLANDA, J N F. Characterization of sugarcane bagasse ash waste for its use in ceramic floor tile[J]. Procedia Materials Science, 2015, 8: 190-196. DOI: 10.1016/j.mspro.2015.04.063.
[43] QUARANTA N, UNSEN M, LÓPEZ H, et al. Ash from sunflower husk as raw material for ceramic products[J]. Ceramics international, 2011, 37(1): 377-385. DOI: 10.1016/j.ceramint.2010.09.015.
[44] 涂湘巍. 稻秸秆气化灰渣的理化性质及煤焦孔结构表征方法的研究[D]. 上海: 华东理工大学, 2015.
[45] 朱永义. 稻谷加工与综合利用[M]. 北京: 中国轻工业出版社, 1999.
[46] VENEZIA A M, LA PAROLA V, LONGO A, et al. Effect of alkali ions on the amorphous to crystalline phase transition of silica[J]. Journal of solid state chemistry, 2001, 161(2): 373-378. DOI: 10.1006/jssc.2001.9345.
[47] ÖHMAN M, NORDIN A, SKRIFVARS B J, et al. Bed agglomeration characteristics during fluidized bed combustion of biomass fuels[J]. Energy & fuels, 2000, 14(1): 169-178. DOI: 10.1021/ef990107b.
[48] SUN L Y, GONG K C. Silicon-based materials from rice husks and their applications[J]. Industrial & engineering chemistry research, 2001, 40(25): 5861-5877. DOI: 10.1021/ie010284b.
[49] CHANDRASEKHAR S, SATYANARAYANA K G, PRAMADA P N, et al. Review Processing, properties and applications of reactive silica from rice husk—an overview[J]. Journal of materials science, 2003, 38(15): 3159-3168. DOI: 10.1023/A:1025157114800.
[50] KIZHAKKUMODOM V H, RANGARAJU P R. Effect of grinding of low-carbon rice husk ash on the microstructure and performance properties of blended cement concrete[J]. Cement and concrete composites, 2015, 55: 348-363. DOI: 10.1016/j.cemconcomp.2014. 09.021.
[51] SALAZAR-CARREÑO D, GARCÍA-CÁCERES R G, ORTIZ-RODRÍGUEZ O. Laboratory processing of Colombian rice husk for obtaining amorphous silica as concrete supplementary cementing material[J]. Construction and building materials, 2015, 96: 65-75. DOI: 10.1016/j.conbuildmat.2015.07.178.
[52] NAIR D G, JAGADISH K S, FRAAIJ A. Reactive pozzolanas from rice husk ash: An alternative to cement for rural housing[J]. Cement and concrete research, 2006, 36(6): 1062-1071. DOI: 10.1016/j.cemconres.2006.03.012.
[53] EL-DAKROURY A, GASSER M S. Rice husk ash (RHA) as cement admixture for immobilization of liquid radioactive waste at different temperatures[J]. Journal of nuclear materials, 2008, 381(3): 271-277. DOI: 10.1016/j.jnucmat.2008.08.026.
[54] PRASARA-A J, GRANT T. Comparative life cycle assessment of uses of rice husk for energy purposes[J]. The international journal of life cycle assessment, 2011, 16(6): 493-502. DOI: 10.1007/s11367-011-0293-7.
[55] Bronzeoak Ltd. Rice husk ash market study[Z], UK Department of Trade and Industry, 2003.
[56] CHAREONPANICH M, NAMTO T, KONGKACHUICHAY P, et al. Synthesis of ZSM-5 zeolite from lignite fly ash and rice husk ash[J]. Fuel processing technology, 2004, 85(15): 1623-1634. DOI: 10.1016/j.fuproc.2003.10.026.
[57] 郎林, 王凤旵, 张超, 等. 利用稻壳气化残渣制备K-ZSM-5分子筛的研究[J]. 农业机械学报, 2013, 44(9): 107-113. DOI: 10.6041/j.issn.1000-1298.2013. 09.020.
[58] 杨文申, 郎林, 阴秀丽, 等. 稻壳灰高值利用制备ZSM-5分子筛[J]. 新能源进展, 2018, 6(1): 8-13. DOI: 10.3969/j.issn.2095-560X.2018.01.002.
[59] DWIVEDI P, ALAVALAPATI J R R, LAL P. Cellulosic ethanol production in the United States: Conversion technologies, current production status, economics, and emerging developments[J]. Energy for sustainable development, 2009, 13(3): 174-182. DOI: 10.1016/j.esd. 2009.06.003.
[60] KIRKELS A F, VERBONG G P J. Biomass gasification: Still promising? A 30-year global overview[J]. Renewable and sustainable energy reviews, 2011, 15(1): 471-481. DOI: 10.1016/j.rser.2010.09.046.
[61] 王红彦. 秸秆气化集中供气工程技术经济分析[D]. 北京: 中国农业科学院, 2012.
[62] SANSANIWAL S K, PAL K, ROSEN M A, et al. Recent advances in the development of biomass gasification technology: A comprehensive review[J]. Renewable and sustainable energy reviews, 2017, 72: 363-384. DOI: 10.1016/j.rser.2017.01.038.
[63] TSIAKMAKIS S, MERTZIS D, DIMARATOS A, et al. Experimental study of combustion in a spark ignition engine operating with producer gas from various biomass feedstocks[J]. Fuel, 2014, 122: 126-139. DOI: 10.1016/j.fuel.2014.01.013.
[64] LARSON E D, WILLIAMS R H, LEAL M R L V. A review of biomass integrated-gasifier/gas turbine combined cycle technology and its application in sugarcane industries, with an analysis for Cuba[J]. Energy for sustainable development, 2001, 5(1): 54-76. DOI: 10.1016/S0973-0826(09)60021-1.
[65] PANG S S, LI J. BIGCC system for New Zealand: an overview and perspective[J]. New Zealand journal of forestry, 2006, 51(2): 7-12.
[66] MINUTILLO M, PERNA A, JANNELLI E, et al. Jannelli, et al. Coupling of biomass gasification and SOFC-gas turbine hybrid system for small scale cogeneration applications[J]. Energy procedia, 2017, 105: 730-737. DOI: 10.1016/j.egypro.2017.03.383.
[67] DEY T, SINGDEO D, POPHALE A, et al. SOFC power generation system by bio-gasification[J]. Energy procedia, 2014, 54: 748-755. DOI: 10.1016/j.egypro.2014.07.316.
[68] OZCAN H, DINCER I. Performance evaluation of an SOFC based trigeneration system using various gaseous fuels from biomass gasification[J]. International journal of hydrogen energy, 2015, 40(24): 7798-7807. DOI: 10.1016/j.ijhydene.2014.11.109.
[69] AHRENFELDT J, THOMSEN T P, HENRIKSEN U, et al. Biomass gasification cogeneration-A review of state of the art technology and near future perspectives[J]. Applied thermal engineering, 2013, 50(2): 1407-1417. DOI: 10.1016/j.applthermaleng.2011.12.040.
[70] OUDHUIS A B A, OUWELTJES J P, RIETVELD G, et al. High ef fi ciency electricity and products from biomass and waste; experimental results and proof of principle of staged gasi fi cation and fuel cells[C]// Proceedings of the 2nd World Conference and Technology Exhibition on Biomass for Energy, Industry and Climate Protection. May 10-14, 2004, Rome, Italy, 2004.
[71] HOFMANN P, SCHWEIGER A, FRYDA L, et al. High temperature electrolyte supported Ni-GDC/YSZ/LSM SOFC operation on two-stage Viking gasifier product gas[J]. Journal of power sources, 2007, 173(1): 357-366. DOI: 10.1016/j.jpowsour.2007.04.073.
[72] 程序, 石元春. 木质原料制取先进生物燃料正处在大规模产业化的前夜——迎接生物能源第二波浪潮[J]. 中国工程科学, 2015, 17(1): 11-18. DOI: 10.3969/j. issn.1009-1742.2015.01.002.
[73] 王忠华. 生物质气化技术应用现状及发展前景[J]. 乙醛醋酸化工, 2016, 18(12): 14-18. DOI: 10.1016/j.rser. 2018.02.023.
[74] DIMITRIOU I, GOLDINGAY H, BRIDGWATER A V. Techno-economic and uncertainty analysis of Biomass to Liquid (BTL) systems for transport fuel production[J]. Renewable and sustainable energy reviews, 2018, 88:160-175.
[75] 应浩, 蒋剑春. 生物质能源转化技术与应用(IV)——生物质热解气化技术研究和应用[J]. 生物质化学工程, 2007, 41(6): 47-55. DOI: 10.3969/j.issn.1673-5854.2007. 06.012.