欢迎访问《新能源进展》官方网站!今天是
论文

锂离子电池热管理和安全性研究

  • 董 缇 ,
  • 彭 鹏 ,
  • 曹文炅 ,
  • 王亦伟 ,
  • 岑继文 ,
  • 郭 剑 ,
  • 赵春荣 ,
  • 蒋方明
展开
  • 1. 中国科学院广州能源研究所,广州 510640;
    2. 中国科学院可再生能源重点实验室,广州 510640;
    3. 广东省新能源和可再生能源研究开发与应用重点实验室,广州 510640;
    4. 中国科学院大学,北京 100049
董 缇(1989-),男,博士研究生,主要从事锂离子电池电、热和安全管理方面的研究。 蒋方明(1973-),男,博士,研究员,博士生导师,主要从事电化学能量/动力系统、增强型地热系统、微热流体系统、燃料电池水、热管理,以及高效节能技术/产品等研发工作。E-mail:jiangfm@ms.giec.ac.cn

收稿日期: 2018-10-12

  修回日期: 2018-11-28

  网络出版日期: 2019-02-27

基金资助

国家重点研发计划项目(2018YFB0905300,2018YFB0905303);广东省科技发展专项资金项目(前沿与关键技术创新方向—重大科技专项 2017B01012003);广东省自然科学基金项目(2016A030313172);广东省自然科学基金−重大基础研究培育项目(2015A030308019);广州市重大应用专项项目(201804020020)

Research on Thermal Management and Safety of Li-Ion Batteries

  • DONG Ti ,
  • PENG Peng ,
  • CAO Wen-jiong ,
  • WANG Yi-wei ,
  • CEN Ji-wen ,
  • GUO Jian ,
  • ZHAO Chun-rong ,
  • JIANG Fang-ming
Expand
  • 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;                           
    2. CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; 
    3. Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China;                   
    4. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2018-10-12

  Revised date: 2018-11-28

  Online published: 2019-02-27

摘要

温度是影响锂离子电池性能、寿命和安全性的重要因素,电池热管理系统能使电池的工作温度维持在适宜范围,保障电池安全、高效和长寿命使用。因此,电池热管理系统对动力和储能设备在不同工况和环境下的运行至关重要。本文介绍了锂离子电池热模型的发展和应用,对热管理和安全性的研究进行了归纳;总结了本课题组的相关工作进展;在此基础上,指出了锂离子电池热管理和安全性进一步的研究方向。

本文引用格式

董 缇 , 彭 鹏 , 曹文炅 , 王亦伟 , 岑继文 , 郭 剑 , 赵春荣 , 蒋方明 . 锂离子电池热管理和安全性研究[J]. 新能源进展, 2019 , 7(1) : 50 -59 . DOI: 10.3969/j.issn.2095-560X.2019.01.006

Abstract

Cell temperature has a major influence on the performance, lifespan, and safety of lithium-ion batteries (LIBs). The battery thermal management system (BTMS) is of paramount importance as it is designed to maintain the battery operating temperature within a suitable range to enhance battery safety, cycle life and overall efficiency. In this paper, the new progresses and applications of thermal models of LIBs were presented and the research on thermal management and safety of LIBs over the past decades were summarized. Furthermore, the research work carried out in our laboratory was introduced and the future research directions on LIB thermal management and safety were also put forward.

参考文献

[1] LIU H Q, WEI Z B, HE W D, et al. Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: a review[J]. Energy conversion and management, 2017, 150: 304-330. DOI: 10.1016/j. enconman.2017.08.016.
[2] BROWN S, PYKE D, STEENHOF P. Electric vehicles: the role and importance of standards in an emerging market[J]. Energy policy, 2010, 38(7): 3797-3806. DOI: 10.1016/j.enpol.2010.02.059.
[3] WANG Y S, SPERLING D, TAL G, et al. China's electric car surge[J]. Energy policy, 2017, 102: 486-490. DOI: 10.1016/j.enpol.2016.12.034.
[4] PESARAN A A. Battery thermal models for hybrid vehicle simulations[J]. Journal of power sources, 2002, 110(2): 377-382. DOI: 10.1016/S0378-7753(02)00200-8.
[5] ZHANG Y C, WANG C Y, TANG X D. Cycling degradation of an automotive LiFePO4 lithium-ion battery[J]. Journal of power sources, 2011, 196(3): 1513-1520. DOI: 10.1016/j.jpowsour.2010.08.070.
[6] AN K, BARAI P, SMITH K, et al. Probing the thermal implications in mechanical degradation of lithium-ion battery electrodes[J]. Journal of the electrochemical society, 2014, 161(6): A1058-A1070. DOI: 10.1149/2.069406jes.
[7] SHAH K, CHALISE D, JAIN A. Experimental and theoretical analysis of a method to predict thermal runaway in Li-ion cells[J]. Journal of power sources, 2016, 330: 167-174. DOI: 10.1016/j.jpowsour.2016.08.133.
[8] WANG Q S, PING P, ZHAO X J, et al. Thermal runaway caused fire and explosion of lithium ion battery[J]. Journal of power sources, 2012, 208: 210-224. DOI: 10.1016/j. jpowsour.2012.02.038.
[9] AN Z J, JIA L, DING Y, et al. A review on lithium-ion power battery thermal management technologies and thermal safety[J]. Journal of thermal science, 2017, 26(5): 391-412. DOI: 10.1007/s11630-017-0955-2.
[10] BERNARDI D, PAWLIKOWSKI E, NEWMAN J. A general energy balance for battery systems[J]. Journal of the electrochemical society, 1985, 132(1): 5-12. DOI: 10.1149/1.2113792.
[11] RAO L, NEWMAN J. Heat-generation rate and general energy balance for insertion battery systems[J]. Journal of the electrochemical society, 1997, 144(8): 2697-2704. DOI: 10.1149/1.1837884.
[12] SATO N. Thermal behavior analysis of lithium-ion batteries for electric and hybrid vehicles[J]. Journal of power sources, 2001, 99(1/2): 70-77. DOI: 10.1016/S0378-7753(01)00478-5.
[13] WILLIFORD R E, VISWANATHAN V V, ZHANG J G. Effects of entropy changes in anodes and cathodes on the thermal behavior of lithium ion batteries[J]. Journal of power sources, 2009, 189(1): 101-107. DOI: 10.1016/j.jpowsour. 2008.10.078.
[14] MALEKI H, AL HALLAJ S, SELMAN J R, et al. Thermal properties of lithium-ion battery and components[J]. Journal of the electrochemical society, 1999, 146(3): 947-954. DOI: 10.1149/1.1391704.
[15] CHO Y I, HALPERT G. Heat dissipation of high rate Li-SOCl2 primary cells[J]. Journal of power sources, 1986, 18(2/3): 109-115. DOI: 10.1016/0378-7753(86)80066-0.
[16] CHO Y I, CHEE D W. Thermal analysis of primary cylindrical lithium cells[J]. Journal of the electrochemical society, 1991, 138(4): 927-930. DOI: 10.1149/1.2085749.
[17] WANG Q, JIANG B, LI B, et al. A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles[J]. Renewable and sustainable energy reviews, 2016, 64: 106-128. DOI: 10.1016/j.rser.2016.05.033.
[18] DOYLE M, FULLER T F, NEWMAN J. Modeling of galvanostatic charge and discharge of the lithium/polymer/ insertion cell[J]. Journal of the electrochemical society, 1993, 140(6): 1526-1533. DOI: 10.1149/1.2221597.
[19] GU W B, WANG C Y. Thermal-electrochemical modeling of battery systems[J]. Journal of the electrochemical society, 2000, 147(8): 2910-2922. DOI: 10.1149/1.1393625.
[20] KIM G H, SMITH K, LEE K J, et al. 2011. Multi-Domain modeling of lithium-ion batteries encompassing multi-physics in varied length scales[J]. Journal of the electrochemical society, 2011, 158(8): A955-A969. DOI: 10.1149/1.3597614.
[21] LEE K J, SMITH K, PESARAN A, et al. Three dimensional thermal-, electrical-, and electrochemical- coupled model for cylindrical wound large format lithium-ion batteries[J]. Journal of power sources, 2013, 241: 20-32. DOI: 10.1016/j.jpowsour.2013.03.007.
[22] CHEN Y F, EVANS J W. Three-dimensional thermal modeling of lithium-polymer batteries under galvanostatic discharge and dynamic power profile[J]. Journal of the electrochemical society, 1994, 141(11): 2947-2955. DOI: 10.1149/1.2059263.
[23] AL HALLAJ S, MALEKI H, HONG J S, et al. Thermal modeling and design considerations of lithium-ion batteries[J]. Journal of power sources, 1999, 83(1/2): 1-8. DOI: 10.1016/S0378-7753(99)00178-0.
[24] VERBRUGGE M W. Primary current distribution in a thin-film battery. Application to power-density calculations for lithium batteries[J]. Journal of electrostatics, 1995, 34(1): 61-85. DOI: 10.1016/0304-3886(94)00042-U.
[25] KWON K H, SHIN C B, KANG T H, et al. A two-dimensional modeling of a lithium-polymer battery[J]. Journal of power sources, 2006, 163(1): 151-157. DOI: 10.1016/j.jpowsour.2006.03.012.
[26] LIN X F, PEREZ H E, MOHAN S, et al. A lumped-parameter electro-thermal model for cylindrical batteries[J]. Journal of power sources, 2014, 257: 1-11. DOI: 10.1016/j.jpowsour.2014.01.097.
[27] GOUTAM S, NIKOLIAN A, JAGUEMONT J, et al. Three-dimensional electro-thermal model of li-ion pouch cell: analysis and comparison of cell design factors and model assumptions[J]. Applied thermal engineering, 2017, 126: 796-808. DOI: 10.1016/j.applthermaleng.2017.07.206.
[28] SOMASUNDARAM K, BIRGERSSON E, MUJUMDAR A S. Thermal–electrochemical model for passive thermal management of a spiral-wound lithium-ion battery[J]. Journal of power sources, 2012, 203: 84-96. DOI: 10.1016/j.jpowsour.2011.11.075.
[29] YE Y H, SHI Y X, CAI N S, et al. Electro-thermal modeling and experimental validation for lithium ion battery[J]. Journal of power sources, 2012, 199: 227-238. DOI: 10.1016/j.jpowsour.2011.10.027.
[30] HOSSEINZADEH E, GENIESER R, WORWOOD D, et al. A systematic approach for electrochemical-thermal modelling of a large format lithium-ion battery for electric vehicle application[J]. Journal of power sources, 2018, 382: 77-94. DOI: 10.1016/j.jpowsour.2018.02.027.
[31] TANG Y W, JIA M, LI J, et al. Numerical analysis of distribution and evolution of reaction current density in discharge process of lithium-ion power battery[J]. Journal of the electrochemical society, 2014, 161(8): E3021-E3027. DOI: 10.1149/2.004408jes.
[32] XU M, ZHANG Z Q, WANG X, et al. Two-dimensional electrochemical-thermal coupled modeling of cylindrical LiFePO4 batteries[J]. Journal of power sources, 2014, 256: 233-243. DOI: 10.1016/j.jpowsour.2014.01.070.
[33] MAHAMUD R, PARK C. Reciprocating air flow for Li-ion battery thermal management to improve temperature uniformity[J]. Journal of power sources, 2011, 196(13): 5685-5696. DOI: 10.1016/j.jpowsour.2011.02.076.
[34] ZHAO J T, RAO Z H, LI Y M. Thermal performance of mini-channel liquid cooled cylinder based battery thermal management for cylindrical lithium-ion power battery[J]. Energy conversion and management, 2015, 103: 157-165. DOI: 10.1016/j.enconman.2015.06.056.
[35] COLEMAN B, OSTANEK J, HEINZEL J. Reducing cell-to-cell spacing for large-format lithium ion battery modules with aluminum or PCM heat sinks under failure conditions[J]. Applied energy, 2016, 180: 14-26. DOI: 10.1016/j.apenergy.2016.07.094.
[36] ZHAO R, GU J J, LIU J. An experimental study of heat pipe thermal management system with wet cooling method for lithium ion batteries[J]. Journal of power sources, 2015, 273: 1089-1097. DOI: 10.1016/j.jpowsour.2014.10.007.
[37] FAN LW, KHODADADI J M, PESARAN A A. A parametric study on thermal management of an air-cooled lithium-ion battery module for plug-in hybrid electric vehicles[J]. Journal of power sources, 2013, 238: 301-312. DOI: 10.1016/j.jpowsour.2013.03.050.
[38] XU X M, HE R. Research on the heat dissipation performance of battery pack based on forced air cooling[J]. Journal of power sources, 2013, 240: 33-41. DOI: 10.1016/j.jpowsour.2013.03.004.
[39] NELSON P, DEES D, AMINE K, et al. Modeling thermal management of lithium-ion PNGV batteries[J]. Journal of power sources, 2002, 110(2): 349-356. DOI: 10.1016/ S0378-7753(02)00197-0.
[40] PESARAN A A. Battery thermal management in EVs and HEVs: issues and solutions[C]//Proceedings of the First Annual Advanced Automotive Battery Conference. Las Vegas, Nevada: NREL, 2001.
[41] KOHN S, BERDICHEVSKY G, HEWETT B C. Tunable frangible battery pack system: 7923144B2[P]. 2011-04-12.
[42] ENDO T, NUKADA A, MATSUOKA S. Tsubame-KFC: a modern liquid submersion cooling prototype towards exascale becoming the greenest supercomputer in the world[C]//Proceedings of the 20th IEEE International Conference on Parallel and Distributed Systems. Hsinchu, Taiwan: IEEE, 2014: 360-367. DOI: 10.1109/PADSW. 2014.7097829.
[43] JARRETT A, KIM I Y. Design optimization of electric vehicle battery cooling plates for thermal performance[J]. Journal of power sources, 2011, 196(23): 10359-10368. DOI: 10.1016/j.jpowsour.2011.06.090.
[44] PARRISH R, ELANKUMARAN K, GANDHI M, et al. Voltec battery design and manufacturing[C]//Proceedings of World Congress & Exhibition. Detroit, USA: SAE, 2011. DOI: 10.4271/2011-01-1360.
[45] BEHR. Thermal management for hybrid vehicles[M]. Stuttgart Germany, Technical Press Day, 2009.
[46] AL HALLAJ S, SELMAN J R. A novel thermal management system for electric vehicle batteries using phase-change material[J]. Journal of the electrochemical society, 2000, 147(9): 3231-3236.
[47] MILLS A, AL-HALLAJ S. Simulation of passive thermal management system for lithium-ion battery packs[J]. Journal of power sources, 2005, 141(2): 307-315. DOI: 10.1016/j.jpowsour.2004.09.025.
[48] HUSSAIN A, ABIDI I H, TSO C Y, et al. Thermal management of lithium ion batteries using graphene coated nickel foam saturated with phase change materials[J]. International journal of thermal sciences, 2018, 124: 23-35.
[49] ZHOU X F, XIAO H N, FENG J, et al. Preparation and thermal properties of paraffin/porous silica ceramic composite[J]. Composites science and technology, 2009, 69(7/8): 1246-1249. DOI: 10.1016/j.compscitech.2009. 02.030.
[50] LI W Q, QU Z G, HE Y L, et al. Experimental and numerical studies on melting phase change heat transfer in open-cell metallic foams filled with paraffin[J]. Applied thermal engineering, 2012, 37: 1-9. DOI: 10.1016/j. applthermaleng.2011.11.001.
[51] TRP A. An experimental and numerical investigation of heat transfer during technical grade paraffin melting and solidification in a shell-and-tube latent thermal energy storage unit[J]. Solar energy, 2005, 79(6): 648-660. DOI: 10.1016/j.solener.2005.03.006.
[52] AKGÜN M, AYDIN O, KAYGUSUZ K. Thermal energy storage performance of paraf?n in a novel tube-in-shell system[J]. Applied thermal engineering, 2008, 28(5/6): 405-413. DOI: 10.1016/j.applthermaleng.2007.05.013.
[53] SWANEPOEL G. Thermal management of hybrid electrical vehicle using heat pipes[D]. South Africa: University of Stellenbosch, 2001.
[54] TRAN T H, HARMAND S, SAHUT B. Experimental investigation on heat pipe cooling for hybrid electric vehicle and electric vehicle lithium-ion battery[J]. Journal of power sources, 2014, 265: 262-272. DOI: 10.1016/j. jpowsour.2014.04.130.
[55] 曾毓群. 聚合物锂离子电池安全性能研究及高温性能探讨[D]. 北京: 中国科学院物理研究所, 2006.
[56] SANTHANAGOPALAN S, RAMADASS P, ZHANG J. Analysis of internal short-circuit in a lithium ion cell[J]. Journal of power sources, 2009, 194(1): 550-557. DOI: 10.1016/j.jpowsour.2009.05.002.
[57] CHEN Z Y, XIONG R, LU J H, et al. Temperature rise prediction of lithium-ion battery suffering external short circuit for all-climate electric vehicles application[J]. Applied energy, 2018, 213: 375-383. DOI: 10.1016/ j.apenergy. 2018.01.068.
[58] CHIU K C, LIN C H, YEH S F, et al. An electrochemical modeling of lithium-ion battery nail penetration[J]. Journal of power sources, 2014, 251: 254-263. DOI: 10.1016/j.jpowsour.2013.11.069.
[59] SPOTNITZ R, FRANKLIN J. Abuse behavior of high- power, lithium-ion cells[J]. Journal of power sources, 2003, 113(1): 81-100. DOI: 10.1016/S0378-7753(02)00488-3.
[60] DAN P, MENGERITSKI E, GERONOV Y, et al. Performances and safety behaviour of rechargeable AA-size Li/LixMnO2 cell[J]. Journal of power sources, 1995, 54(1): 143-145. DOI: 10.1016/0378-7753(94)02055-8.
[61] HE S Y, ZENG J B, HABTE B T, et al. Numerical reconstruction of microstructure of graphite anode of lithium-ion battery[J]. Science bulletin, 2016, 61(8): 656-664. DOI: 10.1007/s11434-016-1048-4.
[62] JIANG F M, PENG P, SUN Y Q. Thermal analyses of LiFePO4/graphite battery discharge processes[J]. Journal of power sources, 2013, 243: 181-194. DOI: 10.1016/ j.jpowsour.2013.05.089.
[63] DONG T, PENG P, JIANG F M. Numerical modeling and analysis of the thermal behavior of NCM lithium-ion batteries subjected to very high C-rate discharge/charge operations[J]. International journal of heat and mass transfer, 2018, 117: 261-272. DOI: 10.1016/j.ijheatmasstransfer. 2017.10.024.
[64] 李志斌, 岑继文, 彭鹏, 等. 圆柱形锂离子电池热管理实验研究[J]. 新能源进展, 2016, 4(4): 305-311.
[65] PENG P, JIANG F M. Thermal behavior analyses of stacked prismatic LiCoO2 lithium-ion batteries during oven tests[J]. International journal of heat and mass transfer, 2015, 88: 411-423. DOI: 10.1016/j.ijheatmasstransfer.2015. 04.101.
[66] JIANG F M, PENG P. Elucidating the performance limitations of lithium-ion batteries due to species and charge transport through five characteristic parameters[J]. Scientific reports, 2016, 6: 32639. DOI: 10.1038/srep32639.
[67] ZHAO C R, CAO W J, DONG T, et al. Thermal behavior study of discharging/charging cylindrical lithium-ion battery module cooled by channeled liquid flow[J]. International journal of heat and mass transfer, 2018, 120: 751-762. DOI: 10.1016/j.ijheatmasstransfer.2017.12.083.
[68] 赵春荣, 曹文炅, 董缇, 等. 圆柱形锂离子电池模组微通道液冷热模型[J]. 化工学报, 2017, 68(8): 3232-3241. DOI: 10.11949/j.issn.0438-1157.20170278.
[69] ZHAO C R, SOUSA A C M, JIANG F M. Minimization of thermal non-uniformity in lithium-ion battery pack cooled by channeled liquid flow[J]. International journal of heat and mass transfer, 2019, 129: 660-670. DOI: 10.1016/j.ijheatmasstransfer.2018.10.017.
[70] CAO W, ZHAO C, JIANG F, WANG Y, DONG T, PENG P. Thermal modeling of full-size-scale cylindrical battery pack cooled by channeled liquid flow. (Under review)
[71] CEN J W, LI Z B, JIANG F M. Experimental investigation on using the electric vehicle air conditioning system for lithium-ion battery thermal management[J]. Energy for sustainable development, 2018, 45: 88-95. DOI: 10.1016/j.esd.2018.05.005.
[72] PENG P, SUN Y Q, JIANG F M. Thermal analyses of LiCoO2 lithium-ion battery during oven tests[J]. Heat and mass transfer, 2014, 50(10): 1405-1416. DOI: 10.1007/ s00231-014-1353-x.
[73] DONG T, WANG Y, PENG P, JIANG F, Electrical- thermal behaviors of a cylindrical graphite-NCA Li-ion battery responding to external short circuit operation[J].   International journal of energy research, 2019,1-16.
[74] 动力电池回收利用行业报告(2018)[R]. 北京: 中国电池联盟联合北京绿色智汇能源技术研究院, 2018.
文章导航

/