[1] DUNN-RANKIN D, LEAL E M, WALTHER D C. Personal power systems[J]. Progress in energy and combustion science, 2005, 31(5/6): 422-465. DOI: 10.1016/j.pecs.2005.04.001.
[2] LEWIS N S. Portable energy for the dismounted soldier[R]. McLean, Virginia: JSR, 2003.
[3] ZHANG K L, CHOU S K, ANG S S. MEMS-based solid propellant microthruster design, simulation, fabrication, and testing[J]. Journal of microelectromechanical systems, 2004, 13(2): 165-175. DOI: 10.1109/JMEMS.2004.825309.
[4] FERNANDEZ-PELLO A C. Micropower generation using combustion: issues and approaches[J]. Proceedings of the combustion institute, 2002, 29(1): 883-899. DOI: 10.1016/S1540-7489(02)80113-4.
[5] MARUTA K. Micro and mesoscale combustion[J]. Proceedings of the combustion institute, 2011, 33(1): 125-150. DOI: 10.1016/j.proci.2010.09.005.
[6] JU Y G, MARUTA K. Microscale combustion: technology development and fundamental research[J]. Progress in energy and combustion science, 2011, 37(6): 669-715. DOI: 10.1016/j.pecs.2011.03.001.
[7] WALTHER D C, AHN J. Advances and challenges in the development of power-generation systems at small scales[J]. Progress in energy and combustion science, 2011, 37(5): 583-610. DOI: 10.1016/j.pecs.2010.12.002.
[8] KAISARE N S, VLACHOS D G. A review on microcombustion: fundamentals, devices and applications[J]. Progress in energy and combustion science, 2012, 38(3): 321-359. DOI: 10.1016/j.pecs.2012.01.001.
[9] EPSTEIN A H, SENTURIA S D, AL-MIDANI O, et al. Micro-heat engines, gas turbines, and rocket engines-the MIT microengine project[C]//Proceedings of the 28th Fluid Dynamics Conference. New York: AIAA, 1997. DOI: 10.2514/6.1997-1773.
[10] MEHRA A, ZHANG X, AYON A A, et al. A six-wafer combustion system for a silicon micro gas turbine engine[J]. Journal of microelectromechanical systems, 2002, 9(4): 517-527. DOI: 10.1109/84.896774.
[11] ISOMURA K, TANAKA S, TOGO S I, et al. Development of high-speed micro-gas bearings for three-dimensional micro-turbo machines[J]. Journal of micromechanics and microengineering, 2005, 15(9): S222-S227. DOI: 10.1088/0960-1317/15/9/S08.
[12] 曹海亮, 徐进良. 微尺度环形燃烧室的燃烧特性[J]. 自然科学进展, 2006, 16(7): 874-880. DOI: 10.3321/j.issn:1002-008X.2006.07.014.
[13] 李德桃, 邓军, 潘剑锋, 等. 微型发动机燃烧室的模拟研究[J]. 机械工程学报, 2002, 38(10): 59-61. DOI: 10.3321/j.issn:0577-6686.2002.10.014.
[14] HIRATA K. Mechanical loss reduction of a 100W class stirling engine[C]//Proceedings of the 11th International Stirling Engine Conference. Rome: University of Rome, 2003.
[15] LANE N W, WOOD J G. High efficiency, long life, low mass stirling engine for low power applications[C]//The Mechanical Working Group of the Interagency Advanced Power Group. 2003.
[16] FU K, WALTHER D C, FERNANDEZ-PELLO A C, et al. Preliminary investigation of a small-scale rotary internal combustion engine[C]//Proceedings of 1999 Fall Technical Meeting. Irvine, CA: Western States Section/Combustion Institute, 1999.
[17] 郭峥, 林其钊, 阿布里提•阿布都拉. 微转子发动机的三区准维模型燃烧计算研究[J]. 内燃机工程, 2006, 27(2): 20-24. DOI: 10.3969/j.issn.1000-0925.2006.02.005.
[18] 钟晓晖, 王小雷, 勾昱君, 等. 1台微型三角转子发动机的研制与试验研究[J]. 航空发动机, 2007, 33(4): 15-17. DOI: 10.3969/j.issn.1672-3147.2007.02.005.
[19] AICHLMAYR H T, KITTELSON D B, ZACHARIAH M R. Micro-HCCI combustion: experimental characterization and development of a detailed chemical kinetic model with coupled piston motion[J]. Combustion and flame, 2003, 135(3): 227-248. DOI: 10.1016/S0010-2180(03)00161-5.
[20] AICHLMAYR H T, KITTELSON D B, ZACHARIAH M R. Miniature free-piston homogeneous charge compression ignition engine-compressor concept-Part I: performance estimation and design considerations unique to small dimensions[J]. Chemical engineering science, 2002, 57(19): 4161-4171. DOI: 10.1016/S0009-2509(02)00256-7.
[21] DAHM W J A, NI J, MIJIT K, et al. Micro internal combustion swing engine (MICSE) for portable power generation systems[C]//Proceedings of the 40th AIAA Aerospace Sciences Meeting & Exhibit, Aerospace Sciences Meetings. Reno, NV: AIAA, 2002. DOI: 10.2514/6.2002-722.
[22] 周雄, 孔文俊. 燃烧特征参数对MICSE性能及热力过程的影响[J]. 工程热物理学报, 2015, 36(5): 1125-1129.
[23] 刘秦飞, 蒋利桥, 杨卫斌, 等. 微型摆动式发动机内间歇着火和火焰传播试验研究[J]. 内燃机工程, 2017, 38(2): 30-35. DOI: 10.13949/j.cnki.nrjgc.2017.02.006.
[24] LEWIS JR D H, JANSON S W, COHEN R B, et al. Digital micropropulsion[J]. Sensors and actuators A: physical, 2000, 80(2): 143-154. DOI: 10.1016/S0924- 4247(99)00260-5.
[25] LONDON A P, AYÓN A A, EPSTEIN A H, et al. Microfabrication of a high pressure bipropellant rocket engine[J]. Sensors and actuators A: physical, 2001, 92(1/3): 351-357. DOI: 10.1016/S0924-4247(01)00571-4.
[26] COHEN A L, RONNEY P, FRODIS U, et al. Microcombustor and combustion-based thermoelectric microgenerator: 6613972[P]. 2003-09-02.
[27] SHAO Z P, HAILE S M, AHN J, et al. A thermally self-sustained micro solid-oxide fuel-cell stack with high power density[J]. Nature, 2005, 435(7043): 795-798. DOI: 10.1038/nature03673.
[28] KIM N I, KATO S, KATAOKA T, et al. Flame stabilization and emission of small Swiss-roll combustors as heaters[J]. Combustion and flame, 2005, 141(3): 229-240. DOI: 10.1016/j.combustflame.2005.01.006.
[29] KIM N I, AIZUMI S, YOKOMORI T, et al. Development and scale effects of small Swiss-roll combustors[J]. Proceedings of the combustion institute, 2007, 31(2): 3243-3250. DOI: 10.1016/j.proci.2006.08.077.
[30] 李军伟, 钟北京, 王建华. 甲烷/空气在微小型Swiss-roll燃烧器内燃烧的实验研究[J]. 热能动力工程, 2008, 23(2): 195-200.
[31] 李军伟, 钟北京, 王建华. 甲烷在具有隔热通道的微燃烧器中的燃烧特性[J]. 清华大学学报(自然科学版), 2008, 48(11): 2001-2004. DOI: 10.3321/j.issn:1000- 0054.2008.11.031.
[32] JIANG L Q, ZHAO D Q, WANG X H, et al. Development of a self-thermal insulation miniature combustor[J]. Energy conversion and management, 2009, 50(5): 1308-1313. DOI: 10.1016/j.enconman.2009.01.015.
[33] 张永生, 周俊虎, 杨卫娟, 等. 微型燃烧器热电转化实验研究[J]. 中国电机工程学报, 2006, 26(21): 114-118. DOI: 10.3321/j.issn:0258-8013.2006.21.019.
[34] 杨庆涛, 钟北京, 龚景松. 基于甲烷燃烧的热电转换特性实验研究[J]. 工程热物理学报, 2009, 30(4): 714-716. DOI: 10.3321/j.issn:0253-231X.2009.04.046.
[35] 蒋利桥, 赵黛青, 郭琛绵, 等. 平面火焰微燃烧器及其温差热电转换系统[J]. 燃烧科学与技术, 2010, 16(5): 436-441.
[36] JIANG L Q, ZHAO D Q, GUO C M, et al. Experimental study of a plat-flame micro combustor burning DME for thermoelectric power generation[J]. Energy conversion and management, 2011, 52(1): 596-602. DOI: 10.1016/j. enconman.2010.07.035.
[37] YANG W M, CHOU S K, SHU C, et al. Microscale combustion research for application to micro thermo- photovoltaic systems[J]. Energy conversion and management, 2003, 44(16): 2625-2634. DOI: 10.1016/S0196-8904(03) 00024-4.
[38] YANG W M, CHOU S K, SHU C, et al. Development of microthermophotovoltaic system[J]. Applied physics letters, 2002, 81(27): 5255-5257. DOI: 10.1063/1.1533847.
[39] CHOU S K, YANG W M, CHUA K J, et al. Development of micro power generators–a review[J]. Applied energy, 2011, 88(1): 1-16. DOI: 10.1016/j.apenergy.2010.07.010.
[40] NORTON D G, VLACHOS D G. Combustion characteristics and flame stability at the microscale: a CFD study of premixed methane/air mixtures[J]. Chemical engineering science, 2003, 58(21): 4871-4882. DOI: 10.1016/j.ces.2002.12.005.
[41] NORTON D G, VLACHOS D G. A CFD study of propane/air microflame stability[J]. Combustion and flame, 2004, 138(1/2): 97-107. DOI: 10.1016/j.combustflame. 2004.04.004.
[42] MARUTA K, PARC J K, OH K C, et al. Characteristics of microscale combustion in a narrow heated channel[J]. Combustion, explosion and shock waves, 2004, 40(5): 516-523. DOI: 10.1023/B:CESW.0000041403.16095.a8.
[43] KIM N I, KATAOKA T, MARUYAMA S, et al. Flammability limits of stationary flames in tubes at low pressure[J]. Combustion and flame, 2005, 141(1/2): 78-88. DOI: 10.1016/j.combustflame.2004.12.011.
[44] KIM N I, MARUTA K. A numerical study on propagation of premixed flames in small tubes[J]. Combustion and flame, 2006, 146(1/2): 283-301. DOI: 10.1016/j.combustflame.2006.03.004.
[45] FAN A W, MINAEV S, KUMAR S, et al. Regime diagrams and characteristics of flame patterns in radial microchannels with temperature gradients[J]. Combustion and flame, 2008, 153(3): 479-489. DOI: 10.1016/j. combustflame.2007.10.015.
[46] MARUTA K, KATAOKA T, KIM N I, et al. Characteristics of combustion in a narrow channel with a temperature gradient[J]. Proceedings of the combustion institute, 2005, 30(2): 2429-2436. DOI: 10.1016/j.proci. 2004.08.245.
[47] TSUBOI Y, YOKOMORI T, MARUTA K. Lower limit of weak flame in a heated channel[J]. Proceedings of the combustion institute, 2009, 32(2): 3075-3081. DOI: 10.1016/j.proci.2008.06.151.
[48] 苏航, 蒋利桥, 曹海亮, 等. 微型定容燃烧腔内丙烷/空气火焰传播特性[J]. 内燃机学报, 2016, 34(3): 268-273. DOI: 10.16236/j.cnki.nrjxb.201603036.
[49] 苏航, 蒋利桥, 曹海亮, 等. 微型定容燃烧腔内C2~C4烷烃/空气火焰传播[J]. 化工学报, 2016, 67(11): 4574-4579. DOI: 10.11949/j.issn.0438-1157.20160548.
[50] JIANG L Q, SU H, HUO J P, et al. Experimental study on propane/air flame propagation characteristics in a disc-like gap chamber[J]. Combustion science and technology, 2018: 1-16. DOI: 10.1080/00102202.2018.1516647.
[51] HUO J P, SU H, JIANG L Q, et al. Numerical study on the propagation of premixed flames in confined narrow disc- shape chambers[J]. Combustion science and technology, 2018: 1-25. DOI: 10.1080/00102202.2018.1527829.
[52] PIZZA G, FROUZAKIS C E, MANTZARAS J, et al. Dynamics of premixed hydrogen/air flames in microchannels[J]. Combustion and flame, 2008, 152(3): 433-450. DOI: 10.1016/j.combustflame.2007.07.013.
[53] PIZZA G, FROUZAKIS C E, MANTZARAS J, et al. Dynamics of premixed hydrogen/air flames in mesoscale channels[J]. Combustion and flame, 2008, 155(1/2): 2-20. DOI: 10.1016/j.combustflame.2008.08.006.
[54] FAN Y, SUZUKI Y, KASAGI N. Experimental study of micro-scale premixed flame in quartz channels[J]. Proceedings of the combustion institute, 2009, 32(2): 3083-3090. DOI: 10.1016/j.proci.2008.06.219.
[55] FAN Y, SUZUKI Y, KASAGI N. Quenching mechanism study of oscillating flame in micro channels using phase- locked OH-PLIF[J]. Proceedings of the combustion institute, 2011, 33(2): 3267-3273. DOI: 10.1016/j.proci.2010.05.041.
[56] WAN J L, FAN A W, MARUTA K, et al. Experimental and numerical investigation on combustion characteristics of premixed hydrogen/air flame in a micro-combustor with a bluff body[J]. International Journal of hydrogen energy, 2012, 37(24): 19190-19197. DOI: 10.1016/j.ijhydene.2012. 09.154.
[57] FAN A W, WAN J L, LIU Y, et al. Effect of bluff body shape on the blow-off limit of hydrogen/air flame in a planar micro-combustor[J]. Applied thermal engineering, 2014, 62(1): 13-19. DOI: 10.1016/j.applthermaleng.2013.09.010.
[58] WAN J L, FAN A W, LIU Y, et al. Experimental investigation and numerical analysis on flame stabilization of CH4/air mixture in a mesoscale channel with wall cavities[J]. Combustion and flame, 2015, 162(4): 1035-1045. DOI: 10.1016/j.combustflame.2014.09.024.
[59] MARUTA K, TAKEDA K, AHN J, et al. Extinction limits of catalytic combustion in microchannels[J]. Proceedings of the combustion institute, 2002, 29(1): 957-963. DOI: 10.1016/S1540-7489(02)80121-3.
[60] KAISARE N S, DESHMUKH S R, VLACHOS D G. Stability and performance of catalytic microreactors: simulations of propane catalytic combustion on Pt[J]. Chemical engineering science, 2008, 63(4): 1098-1116. DOI: 10.1016/j.ces.2007.11.014.
[61] LI Y H, CHEN G B, WU F H, et al. Effects of catalyst segmentation with cavities on combustion enhancement of blended fuels in a micro channel[J]. Combustion and flame, 2012, 159(4): 1644-1651. DOI: 10.1016/j. combustflame. 2011.11.017.
[62] LI Y H, CHEN G B, WU F H, et al. Combustion characteristics in a small-scale reactor with catalyst segmentation and cavities[J]. Proceedings of the combustion institute, 2013, 34(2): 2253-2259. DOI: 10.1016/j.proci.2012.06.058.
[63] YANG H L, FENG Y X, WU Y Y, et al. A surface analysis-based investigation of the effect of wall materials on flame quenching[J]. Combustion science and technology, 2011, 183(5): 444-458. DOI: 10.1080/00102202.2010.530323.
[64] 冯耀勋, 杨浩林, 蒋利桥, 等. 壁面附近火焰OH自由基行为的PLIF研究[J]. 工程热物理学报, 2011, 32(4): 699-702.
[65] 冯耀勋, 杨浩林, 汪小憨, 等. 壁面条件对熄火特性影响的实验研究[J]. 工程热物理学报, 2011, 32(6): 1065-1068.
[66] YANG H L, FENG Y X, WANG X H, et al. OH-PLIF investigation of wall effects on the flame quenching in a slit burner[J]. Proceedings of the combustion institute, 2013, 34(2): 3379-3386. DOI: 10.1016/j.proci.2012.07.038.
[67] SAIKI Y, SUZUKI Y. Effect of wall surface reaction on a methane-air premixed flame in narrow channels with different wall materials[J]. Proceedings of the combustion institute, 2013, 34(2): 3395-3402. DOI: 10.1016/j.proci.2012.06.095.
[68] FAN Y, LIN W R, WAN S, et al. Investigation of wall chemical effect using PLIF measurement of OH radical generated by pulsed electric discharge[J]. Combustion and flame, 2018, 196: 255-264. DOI: 10.1016/j. combustflame.2018.06.005.
[69] BAI B, CHEN Z, ZHANG H W, et al. Flame propagation in a tube with wall quenching of radicals[J]. Combustion and flame, 2013, 160(12): 2810-2819. DOI: 10.1016/j.combustflame.2013.07.008.
[70] 杨浩林, 霍杰鹏, 蒋利桥, 等. 壁面反应对微小空间内甲烷/空气着火特性的影响[J]. 燃烧科学与技术, 2015, 21(3): 196-202.
[71] 杨浩林, 霍杰鹏, 蒋利桥, 等. 甲醇中低温着火延迟时间的计算模型[J]. 燃烧科学与技术, 2016, 22(6): 522-526.
[72] HUO J P, YANG H L, JIANG L Q, et al. A modeling study of the effect of surface reactions on methanol–air oxidation at low temperatures[J]. Combustion and flame, 2016, 164: 363-372. DOI: 10.1016/j.combustflame.2015. 11.033.
[73] MATTA L M, NEUMEIER Y, LEMON B, et al. Characteristics of microscale diffusion flames[J]. Proceedings of the combustion institute, 2002, 29(1): 933-939. DOI: 10.1016/S1540-7489(02)80118-3.
[74] CHENG T S, CHEN C P, CHEN C S, et al. Characteristics of microjet methane diffusion flames[J]. Combustion theory and modelling, 2006, 10(5): 861-881. DOI: 10.1080/13647830600551917a.
[75] NAKAMURA Y, YAMASHITA H, SAITO K. A numerical study on extinction behaviour of laminar micro- diffusion flames[J]. Combustion theory and modelling, 2006, 10(6): 927-938. DOI: 10.1080/13647830600941704.
[76] FUJIWARA K, NAKAMURA Y. Experimental study on the unique stability mechanism via miniaturization of jet diffusion flames (microflame) by utilizing preheated air system[J]. Combustion and flame, 2013, 160(8): 1373-1380. DOI: 10.1016/j.combustflame.2013.03.002.
[77] CHEN C P, CHAO Y C, CHENG T S, et al. Structure and stabilization mechanism of a microjet methane diffusion flame near extinction[J]. Proceedings of the combustion institute, 2007, 31(2): 3301-3308. DOI: 10.1016/j.proci.2006.08.069.
[78] GAN Y H, XU J L, YAN Y Y, et al. A comparative study on free jet and confined jet diffusion flames of liquid ethanol from small nozzles[J]. Combustion science and technology, 2014, 186(2): 120-138. DOI: 10.1080/00102202.2013.851077.
[79] 黄显峰, 赵黛青, 张春林, 等. 微尺度扩散火焰特性的数值解析[J]. 工程热物理学报, 2005, 26(5): 883-886. DOI: 10.3321/j.issn:0253-231X.2005.05.052.
[80] 赵黛青, 蒋利桥, 黄显峰, 等. 微尺度预混合火焰结构和熄火特性研究[J]. 工程热物理学报, 2006, 27(4): 711-713. DOI: 10.3321/j.issn:0253-231X.2006.04.055.
[81] 赵黛青, 何琼, 汪小憨, 等. 喷管直径对微尺度扩散火焰特性的影响[J]. 工程热物理学报, 2008, 29(11): 1957-1960. DOI: 10.3321/j.issn:0253-231X.2008.11.041.
[82] 何琼, 赵黛青, 汪小憨, 等. 喷管内传递特性对微尺度扩散火焰的影响[J]. 燃烧科学与技术, 2009, 15(3): 280-285. DOI: 10.3321/j.issn:1006-8740.2009.03.016.
[83] 李星, 张京, 杨浩林, 等. 微喷管甲烷非预混射流火焰燃烧特性实验研究[J]. 工程热物理学报, 2016, 37(4): 907-911.
[84] 李星, 蒋利桥, 杨浩林, 等. 利用平面激光诱导荧光技术及CH滤镜测量微喷管射流火焰OH及CH基元[J]. 光学 精密工程, 2017, 25(5): 1119-1125. DOI: 10.3788/OPE.20172505.1119.
[85] LI X, ZHANG J, YANG H L, et al. Combustion characteristics of non-premixed methane micro-jet flame in coflow air and thermal interaction between flame and micro tube[J]. Applied thermal engineering, 2017, 112: 296-303. DOI: 10.1016/j.applthermaleng.2016.10.082.
[86] GAO J, HOSSAIN A, MATSUOKA T, et al. A numerical study on heat-recirculation assisted combustion for small scale jet diffusion flames at near-extinction condition[J]. Combustion and flame, 2017, 178: 182-194. DOI: 10.1016/j.combustflame.2016.12.028.
[87] CHENG T S, CHAO Y C, WU C Y, et al. Experimental and numerical investigation of microscale hydrogen diffusion flames[J]. Proceedings of the combustion institute, 2005, 30(2): 2489-2497. DOI: 10.1016/j.proci.2004.07.025.
[88] LECOUSTRE V R, SUNDERLAND P B, CHAO B H, et al. Extremely weak hydrogen flames[J]. Combustion and flame, 2010, 157(11): 2209-2210. DOI: 10.1016/j.combustflame.2010.07.024.
[89] HOSSAIN A, NAKAMURA Y. Thermal and chemical structures formed in the micro burner of miniaturized hydrogen-air jet flames[J]. Proceedings of the combustion institute, 2015, 35(3): 3413-3420. DOI: 10.1016/j.proci.2014.08.008.
[90] GAO J, HOSSAIN A, NAKAMURA Y. Flame base structures of micro-jet hydrogen/methane diffusion flames[J]. Proceedings of the combustion institute, 2017, 36(3): 4209-4216. DOI: 10.1016/j.proci.2016.08.034.
[91] 张京, 李星, 杨浩林, 等. 微喷管氢气非预混射流火焰燃烧特性[J]. 化工学报, 2016, 67(7): 2724-2731. DOI: 10.11949/j.issn.0438-1157.20160119.
[92] ZHANG J, LI X, YANG H L, et al. Study on the combustion characteristics of non-premixed hydrogen micro-jet flame and the thermal interaction with solid micro tube[J]. International journal of hydrogen energy, 2017, 42(6): 3853-3862. DOI: 10.1016/j.ijhydene.2016. 07.255.