[1] HU Q, SOMMERFELD M, JARVIS E, et al. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances[J]. The plant journal, 2008, 54(4): 621-639. DOI: 10.1111/j.1365-313X.2008.03492.x.
[2] GUERFALI M, AYADI I, BELHASSEN A, et al. Single cell oil production by Trichosporon cutaneum and lignocellulosic residues bioconversion for biodiesel synthesis[J]. Process safety and environmental protection, 2018, 113: 292-304. DOI: 10.1016/j.psep.2017.11.002.
[3] BHARATHIRAJA B, SRIDHARAN S, SOWMYA V, et al. Microbial oil - A plausible alternate resource for food and fuel application[J]. Bioresource technology, 2017, 233: 423-432. DOI: 10.1016/j.biortech.2017.03.006.
[4] HEREDIA-ARROYO T, WEI W, RUAN R G, et al. Mixotrophic cultivation of Chlorella vulgaris and its potential application for the oil accumulation from non- sugar materials[J]. Biomass and bioenergy, 2011, 35(5): 2245-2253. DOI: 10.1016/j.biombioe.2011.02.036.
[5] BLIGH E G, DYER W J. A rapid method of total lipid extraction and purification[J]. Canadian journal of biochemistry and physiology, 1959, 37(8): 911-917. DOI: 10.1139/o59-099.
[6] FOLCH J, LEES M, SLOANE STANLEY G H. A simple method for the isolation and purification of total lipides from animal tissues[J]. Journal of biological chemistry, 1957, 226(1): 497-509.
[7] 郝翠翠, 梁成伟, 石蕾. 尼罗红和BODIPY荧光染料在微藻油脂含量测定中的应用[J]. 生物学杂志, 2017, 34(1): 70-74. DOI: 10.3969/j.issn.2095-1736.2017.01.070.
[8] RUMIN J, BONNEFOND H, SAINT-JEAN B, et al. The use of fluorescent Nile red and BODIPY for lipid measurement in microalgae[J]. Biotechnology for biofuels, 2015, 8: 42. DOI: 10.1186/s13068-015-0220-4.
[9] XU D, GAO Z Q, LI F, et al. Detection and quantitation of lipid in the microalga Tetraselmis subcordiformis (Wille) Butcher with BODIPY 505/515 staining[J]. Bioresource technology, 2013, 127: 386-390. DOI: 10.1016/j.biortech.2012.09.068.
[10] GREENSPAN P, FOWLER S D. Spectrofluorometric studies of the lipid probe, nile red[J]. Journal of lipid research, 1985, 26(7): 781-789.
[11] MUTANDA T, RAMESH D, KARTHIKEYAN S, et al. Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production[J]. Bioresource technology, 2011, 102(1): 57-70. DOI: 10.1016/j.biortech. 2010.06.077.
[12] ELSEY D, JAMESON D, RALEIGH B, et al. Fluorescent measurement of microalgal neutral lipids[J]. Journal of microbiological methods, 2007, 68(3): 639-642. DOI: 10.1016/j.mimet.2006.11.008.
[13] O'ROURKE E J, SOUKAS A A, CARR C E, et al. C. elegans major fats are stored in vesicles distinct from lysosome-related organelles[J]. Cell metabolism, 2009, 10(5): 430-435. DOI: 10.1016/j.cmet.2009.10.002.
[14] BROWN W J, SULLIVAN T R, GREENSPAN P. Nile red staining of lysosomal phospholipid inclusions[J]. Histo- chemistry, 1992, 97(4): 349-354. DOI: 10.1007/BF00270037.
[15] DUTTA A K, KAMADA K, OHTA K. Spectroscopic studies of nile red in organic solvents and polymers[J]. Journal of photochemistry and photobiology A: chemistry, 1996, 93(1): 57-64. DOI: 10.1016/1010-6030(95)04140-0.
[16] HOUNSLOW E, NOIREL J, GILMOUR D J, et al. Lipid quantification techniques for screening oleaginous species of microalgae for biofuel production[J]. European journal of lipid science and technology, 2017, 119(2): 1500469. DOI: 10.1002/ejlt.201500469.
[17] FOWLER S D, GREENSPAN P. Application of Nile red, a fluorescent hydrophobic probe, for the detection of neutral lipid deposits in tissue sections: comparison with oil red O[J]. Journal of histochemistry & cytochemistry, 1985, 33(8): 833-836 DOI: 10.1177/33.8.4020099.
[18] COOKSEY K E, GUCKERT J B, WILLIAMS S A, et al. Fluorometric determination of the neutral lipid content of microalgal cells using Nile Red[J]. Journal of microbiological methods, 1987, 6(6): 333-345. DOI: 10.1016/0167-7012(87)90019-4.
[19] LEE S J, YOON B D, OH H M. Rapid method for the determination of lipid from the green alga Botryococcus braunii[J]. Biotechnology techniques, 1998, 12(7): 553-556. DOI: 10.1023/A:1008811716448.
[20] KIMURA K, YAMAOKA M, KAMISAKA Y. Rapid estimation of lipids in oleaginous fungi and yeasts using Nile red fluorescence[J]. Journal of microbiological methods, 2004, 56(3): 331-338. DOI: 10.1016/j.mimet.2003.10.018.
[21] HUANG G H, CHEN G, CHEN F. Rapid screening method for lipid production in alga based on Nile red fluorescence[J]. Biomass and bioenergy, 2009, 33(10): 1386-1392. DOI: 10.1016/j.biombioe.2009.05.022.
[22] DE LA JARA A, MENDOZA H, MARTEL A, et al. Flow cytometric determination of lipid content in a marine dinoflagellate, Crypthecodinium cohnii[J]. Journal of applied phycology, 2003, 15(5): 433-438. DOI: 10.1023/A:1026007902078.
[23] DA SILVA T L, REIS A, MEDEIROS R, et al. Oil production towards biofuel from autotrophic microalgae semicontinuous cultivations monitorized by flow cytometry[J]. Applied biochemistry and biotechnology, 2009, 159(2): 568-578. DOI: 10.1007/s12010-008-8443-5.
[24] SITEPU I R, IGNATIA L, FRANZ A K, et al. An improved high-throughput Nile red fluorescence assay for estimating intracellular lipids in a variety of yeast species[J]. Journal of microbiological methods, 2012, 91(2): 321-328. DOI: 10.1016/j.mimet.2012.09.001.
[25] CHEN Z, GONG Y M, FANG X T, et al. Scenedesmus sp. NJ-1 isolated from Antarctica: a suitable renewable lipid source for biodiesel production[J]. World journal of microbiology and biotechnology, 2012, 28(11): 3219-3225. DOI: 10.1007/s11274-012-1132-0.
[26] DE LA HOZ SIEGLER H, AYIDZOE W, BEN-ZVI A, et al. Improving the reliability of fluorescence-based neutral lipid content measurements in microalgal cultures[J]. Algal research, 2012, 1(2): 176-184. DOI: 10.1016/j. algal.2012.07.004.
[27] PICK U, RACHUTIN-ZALOGIN T. Kinetic anomalies in the interactions of Nile red with microalgae[J]. Journal of microbiological methods, 2012, 88(2): 189-196. DOI: 10.1016/j.mimet.2011.10.008.
[28] GOVENDER T, RAMANNA L, RAWAT I, et al. BODIPY staining, an alternative to the Nile Red fluorescence method for the evaluation of intracellular lipids in microalgae[J]. Bioresource technology, 2012, 114: 507-511. DOI: 10.1016/j.biortech.2012.03.024.
[29] WONG D M, NGUYEN T T N, FRANZ A K. Ethylenediaminetetraacetic acid (EDTA) enhances intracellular lipid staining with Nile red in microalgae Tetraselmis suecica[J]. Algal research, 2014, 5: 158-163. DOI: 10.1016/j.algal.2014.08.002.
[30] CHEN W, ZHANG C W, SONG L R, et al. A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae[J]. Journal of microbiological methods, 2009, 77(1): 41-47. DOI: 10.1016/j.mimet.2009.01.001.
[31] YEN DOAN T T, OBBARD J P. Enhanced lipid production in Nannochloropsis sp. using fluorescence- activated cell sorting[J]. Global change biology bioenergy, 2011, 3(3): 264-270. DOI: 10.1111/j.1757-1707.2010.01076.x.
[32] CHEN W, SOMMERFELD M, HU Q. Microwave-assisted Nile red method for in vivo quantification of neutral lipids in microalgae[J]. Bioresource technology, 2011, 102(1): 135-141. DOI: 10.1016/j.biortech.2010.06.076.
[33] SU L C, HSU Y H, WANG H Y. Enhanced labeling of microalgae cellular lipids by application of an electric field generated by alternating current[J]. Bioresource technology, 2012, 111: 323-327. DOI: 10.1016/j.biortech.2012.01.180.
[34] BRENNAN L, BLANCO FERNÁNDEZ A, MOSTAERT A S, et al. Enhancement of BODIPY505/515 lipid fluorescence method for applications in biofuel-directed microalgae production[J]. Journal of microbiological methods, 2012, 90(2): 137-143. DOI: 10.1016/j.mimet.2012.03.020.
[35] COOPER M S, HARDIN W R, PETERSEN T W, et al. Visualizing “green oil” in live algal cells[J]. Journal of bioscience and bioengineering, 2010, 109(2): 198-201. DOI: 10.1016/j.jbiosc.2009.08.004.
[36] CIRULIS J T, STRASSER B C, SCOTT J A, et al. Optimization of staining conditions for microalgae with three lipophilic dyes to reduce precipitation and fluorescence variability[J]. Cytometry part A, 2012, 81A(7): 618-626. DOI: 10.1002/cyto.a.22066.
[37] KURNIASIH I N, LIANG H, MOHR P C, et al. Nile red dye in aqueous surfactant and micellar solution[J]. Langmuir, 2015, 31(9): 2639-2648. DOI: 10.1021/la504378m.
[38] FELBECK T, BEHNKE T, HOFFMANN K, et al. Nile-Red-nanoclay hybrids: red emissive optical probes for use in aqueous dispersion[J]. Langmuir, 2013, 29(36): 11489-11497. DOI: 10.1021/la402165q.