欢迎访问《新能源进展》官方网站!今天是

无机钙钛矿太阳能电池研究进展

  • 刘红莎 ,
  • 郇昌梦 ,
  • 肖秀娣 ,
  • 毕卓能 ,
  • 陆源 ,
  • 齐帅 ,
  • 詹勇军 ,
  • 徐雪青 ,
  • 徐刚
展开
  • 1. 中国科学院广州能源研究所,广州 510640;
    2. 中国科学院大学,北京 100049;
    3. 中国科学技术大学,合肥 230031;
    4. 中国科学技术大学 纳米科学技术研究院,江苏 苏州 215123
刘红莎(1994-),女,硕士研究生,主要从事全无机钙钛矿太阳能电池光电转换研究。肖秀娣(1982-),女,博士,副研究员,硕士生导师,主要从事二氧化钒智能窗的研究。徐 刚(1970-),男,博士,研究员,博士生导师,中国科学院“百人计划”项目引进人才,主要从事太阳能光热、光电纳米复合材料的研究与开发。

收稿日期: 2018-10-13

  修回日期: 2018-11-13

  网络出版日期: 2019-04-30

基金资助

中国科学院青年创新促进会项目(2017400); 广东省特支人才计划项目(2015TQ01N714)

Research Progress of All-Inorganic Perovskite Solar Cells

  • LIU Hong-sha ,
  • HUAN Chang-meng ,
  • XIAO Xiu-di ,
  • BI Zhuo-neng ,
  • LU Yuan ,
  • QI Shuai ,
  • ZHAN Yong-jun ,
  • XU Xue-qing ,
  • XU Gang
Expand
  • 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. University of Science and Technology of China, Hefei 230031, China;
    4. Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, Jiangsu, China

Received date: 2018-10-13

  Revised date: 2018-11-13

  Online published: 2019-04-30

摘要

钙钛矿太阳能电池是一种新兴的全固态平面型太阳能电池,从2009年第一次出现到现在发展迅速。据报道,有机-无机杂化钙钛矿太阳能电池的光电转换效率已超过24%,全无机钙钛矿太阳能电池的光电转换效率也超过17%。相比于有机-无机杂化钙钛矿太阳能电池,无机钙钛矿材料由于热稳定性好而成为钙钛矿太阳能电池研究领域的热点之一。本文主要综述了全无机钙钛矿太阳能电池的基本知识及最新的研究成果,尤其是提高全无机钙钛矿太阳能电池的效率及稳定性方面的成果,对钙钛矿薄膜层的改进、电子传输层及空穴传输层优化方面的成果作了详细的介绍和评述。

本文引用格式

刘红莎 , 郇昌梦 , 肖秀娣 , 毕卓能 , 陆源 , 齐帅 , 詹勇军 , 徐雪青 , 徐刚 . 无机钙钛矿太阳能电池研究进展[J]. 新能源进展, 2019 , 7(2) : 142 -148 . DOI: 10.3969/j.issn.2095-560X.2019.02.005

Abstract

Perovskite solar cells is a kind of emerging all-solid-state planar solar cell and grew rapidly since its first appearance in 2009. It was reported that the photoelectric conversion efficiency of organic-inorganic hybrid perovskite solar cells has exceeded 24%, and the photoelectric conversion efficiency of all inorganic perovskite solar cells exceeded 17%. Compared with organic-inorganic hybrid perovskite solar cells, the thermostability of inorganic perovskite materials was higher, which makes it a hotspot in the research field of perovskite solar cells. In this paper, the latest research progress of all-inorganic perovskite solar cells was mainly reviewed, especially the improvement of the efficiency and stability of the all-inorganic perovskite solar cell types. The improvement of the perovskite film layer, results of optimizing the electronic transport layer and hole transport layer were described and reviewed in detail.

参考文献

[1] 徐晓霞. TiO2及SnO2基电子传输层的低温制备及其在钙钛矿太阳能电池中的应用研究[D]. 泉州: 华侨大学, 2018.
[2] HOU J G, CAO S Y, WU Y Z, et al.Inorganic colloidal perovskite quantum dots for robust solar CO2 reduction[J]. Chemistry: A European journal, 2017, 23(40): 9481-9485. DOI: 10.1002/chem.201702237.
[3] STOUMPOS C C, MALLIAKAS C D, PETERS J A, et al.Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection[J]. Crystal growth & design, 2013, 13(7): 2722-2727. DOI: 10.1021/cg400645t.
[4] SANCHEZ R S, DE LA FUENTE M S, SUAREZ I, et al. Tunable light emission by exciplex state formation between hybrid halide perovskite and core/shell quantum dots: implications in advanced LEDs and photovoltaics[J]. Science advances, 2016, 2(1): e1501104. DOI: 10.1126/ sciadv.1501104.
[5] DUAN J L, ZHAO Y Y, HE B L, et al.High-purity inorganic perovskite films for solar cells with 9.72% efficiency[J]. Angewandte chemie international edition, 2018, 57(14): 3787-3791. DOI: 10.1002/anie.201800019.
[6] DAR M I, ABDI-JALEBI M, ARORA N, et al.Understanding the impact of bromide on the photovoltaic performance of CH3NH3PbI3 solar cells[J]. Advanced materials, 2015, 27(44): 7221-7228. DOI: 10.1002/adma. 201503124.
[7] ZEN Q S, ZHANG X Y, FENG X L, et al.Polymer-passivated inorganic cesium lead mixed-halide perovskites for stable and efficient solar cells with high open-circuit voltage over 1.3V[J]. Advanced materials, 2018, 30(9): 1705393. DOI: 10.1002/adma.201705393.
[8] LIN J, LAI M L, DOU L T, et al.Thermochromic halide perovskite solar cells[J]. Nature materialsvolume, 2018, 17(3): 261-267. DOI: 10.1038/S41563-017-0006-0.
[9] STAVRINADIS A, PRADHAN S, PAPAGIORGIS P, et al.Suppressing deep traps in PbS colloidal quantum dots via facile iodide substitutional doping for solar cells with efficiency >10%[J]. ACS energy letters, 2017, 2(4): 739-744. DOI: 10.1021/acsenergylett.7b00091.
[10] RIPOLLES T S, NISHINAKA K, OGOMI Y, et al.Efficiency enhancement by changing perovskite crystal phase and adding a charge extraction interlayer in organic amine free-perovskite solar cells based on cesium[J]. Solar energy materials and solar cells, 2016, 144: 532-536. DOI: 10.1016/j.solmat.2015.09.041.
[11] WANG P Y, ZHANG X W, ZHOU Y Q, et al.Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells[J]. Nature communications, 2018, 9: 2225. DOI: 10.1038/ s41467-018-04636-4.
[12] CHEN C Y, LIN H Y, CHIANG K M, et al.All- Vacuum-deposited stoichiometrically balanced inorganic cesium lead halide perovskite solar cells with stabilized efficiency exceeding 11%[J]. Advanced materials, 2017, 29(12): 1605290. DOI: 10.1002/adma.201605290.
[13] MA Q S, HUANG S J, WEN X M, et al.Hole Transport layer free inorganic CsPbIBr2 perovskite solar cell by dual source thermal evaporation[J]. Advanced energy materials, 2016, 6(7): 1502202. DOI: 10.1002/aenm.201502202.
[14] SWARNKAR A, MARSHALL A R, SANEHIRA E M, et al.Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics[J]. Science, 2016, 354(6308): 92-95. DOI: 10.1126/science.aag2700.
[15] SANEHIRA E M, MARSHALL A R, CHRISTIANS J A, et al. Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells[J]. Science advances, 2017, 3(10): eaao4204. DOI: 10.1126/ sciadv.aao4204.
[16] DUTTA A, DUTTA S K, DAS ADHIKARI S, et al.Phase-stable CsPbI3 nanocrystals: the reaction temperature[J]. Angewandte chemie international edition, 2018, 29(57): 9083-9087. DOI: 10.1002/anie.201803701.
[17] EPERON G E, PATERNÒ G M, SUTTON R J, et al.Inorganic caesium lead iodide perovskite solar cells[J]. Journal of materials chemistry A, 2015, 39(3): 19688-19695. DOI: 10.1039/C5TA06398A.
[18] LI Z, YANG M J, PARK J S, et al.Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys[J]. Chemistry of materials, 2016, 28(1): 284-292. DOI: 10.1021/acs.chemmater.5b04107.
[19] LIU C, LI W Z, ZHANG C L, et al.All-inorganic CsPbI2Br perovskite solar cells with high efficiency exceeding 13%[J]. Journal of the American chemical society, 2018, 140(11): 3825-3828. DOI: 10.1021/jacs.7b13229.
[20] DUAN J L, ZHAO Y Y, HE B L, et al.Simplified perovskite solar cell with 4.1% efficiency employing inorganic CsPbBr3 as light absorber[J]. Small, 2018, 14(20): 1704443. DOI: 10.1002/smll.201704443.
[21] YIN W J, YAN Y F, WEI S H.Anomalous alloy properties in mixed halide perovskites[J]. The journal of physical chemistry letters, 2014, 5(21): 3625-3631. DOI: 10.1021/jz501896w.
[22] BEAL R E, SLOTCAVAGE D J, LEIJTENS T, et al.Cesium lead halide perovskites with improved stability for tandem solar cells[J]. The journal of physical chemistry letters, 2016, 7(5): 746-751. DOI: 10.1021/acs.jpclett. 6b00002.
[23] MARSHALL A R, YOUNG M R, NOZIK A J, et al.Exploration of metal chloride uptake for improved performance characteristics of PbSe quantum dot solar cells[J]. The journal of physical chemistry letters, 2015, 6(15): 2892-2899. DOI: 10.1021/acs.jpclett.5b01214.
[24] OGOMI Y, MORITA A, TSUKAMOTO S, et al.CH3NH3SnXPb(1-X)I3 perovskite solar cells covering up to 1060 nm[J]. The journal of physical chemistry letters, 2014, 5(6): 1004-1011. DOI: 10.1021/jz5002117.
[25] LI N, ZHU Z L, LI J W, et al.Inorganic CsPb1-XSnXIBr2 for efficient wide-bandgap perovskite solar cells[J]. Advanced energy materials, 2018, 8(22): 1800525. DOI: 10.1002/aenm.201800525.
[26] YANG F, HIROTANI D, KAPIL G, et al.All-inorganic CsPb1-XGeXI2Br perovskite with enhanced phase stability and photovoltaic performance[J]. Angewandte chemie international edition, 2018, 57(39): 12745-12749. DOI: 10.1002/anie.201807270.
[27] SLAVNEY A H, HU T, LINDENBERG A M, et al.A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications[J]. Journal of the American chemical society, 2016, 138(7): 2138-2141. DOI: 10.1021/jacs.5b13294.
[28] LIU C, HU M M, ZHOU X Y, et al.Efficiency and stability enhancement of perovskite solar cells by introducing CsPbI3 quantum dots as an interface engineering layer[J]. NPG Asia materials, 2018, 10(6): 552-561. DOI: 10.1038/s41427-018-0055-0.
[29] YAN L, XUE Q F, LIU M Y, et al.Interface engineering for all-inorganic CsPbI2Br perovskite solar cells with efficiency over 14%[J]. Advanced materials, 2018, 30(33): 1802509. DOI: 10.1002/adma.201802509.
[30] DING J, ZHAO Y Y, DUAN J L, et al.Alloy-controlled work function for enhanced charge extraction in all-inorganic CsPbBr3 perovskite solar cells[J]. ChemSusChem, 2018, 11(9): 1432-1437. DOI: 10.1002/cssc.201800060.
文章导航

/