欢迎访问《新能源进展》官方网站!今天是

三维石墨烯包覆的硫掺杂碳负载二硫化硒复合材料的制备及其储锂性能研究

  • 胡金龙 ,
  • 任逸伦 ,
  • 张灵志
展开
  • 1. 中国科学院广州能源研究所,广州 510640;
    2. 中国科学院大学,北京 100049;
    3. 中国科学技术大学,合肥 230026
胡金龙(1986-),男,博士研究生,主要从事锂硫电池高性能复合电极材料的设计和研究。张灵志(1969-),男,博士,研究员,博士生导师,中国科学院“百人计划”引进国外杰出人才,主要从事有机光电材料和纳米材料方面的设计合成及其在各种能量储存转化器件方面的应用研究。

收稿日期: 2019-03-05

  修回日期: 2019-03-22

  网络出版日期: 2019-06-29

基金资助

国家自然科学基金项目(21573239); 广州市科技计划项目(201509010018)

3D Graphene Wrapped Selenium Disulfide-Impregnated Sulfur-Doped Mesoporous Carbon Composite with Enhanced Lithium Storage Performance

  • HU Jin-long ,
  • REN Yi-lun ,
  • ZHANG Ling-zhi
Expand
  • 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. University of Science and Technology of China, Hefei 230026, China

Received date: 2019-03-05

  Revised date: 2019-03-22

  Online published: 2019-06-29

摘要

二硫化硒(SeS2)作为储锂的正极材料,具有硒和硫以外的独特优势。采用硫掺杂介孔碳(sulfur-doped mesoporous carbon, SMC)负载SeS2,然后用三维石墨烯(three-dimensional grapheme, 3DG)对其进行包覆,制备了双重限定的SeS2基正极结构。通过透射电子显微镜(transmission electron microscope, TEM),扫描电子显微镜(scanning electron microscopy, SEM)以及X射线衍射(X-ray diffraction, XRD)对所制备的3DG-SMC-SeS2纳米复合材料的形态和结构进行表征。结果显示,SeS2均匀地分布在SMC基体的介孔通道中,3DG良好地包裹SMC-SeS2复合材料。受益于SeS2不可或缺的优势和独特设计的主体构架,3DG-SMC-SeS2正极表现出极好的循环性能和优异的高倍率性能。这种新型SeS2基正极材料为克服目前锂硫电池的主要瓶颈提供了一种可行的策略。

本文引用格式

胡金龙 , 任逸伦 , 张灵志 . 三维石墨烯包覆的硫掺杂碳负载二硫化硒复合材料的制备及其储锂性能研究[J]. 新能源进展, 2019 , 7(3) : 216 -222 . DOI: 10.3969/j.issn.2095-560X.2019.03.003

Abstract

Selenium disulfide (SeS2) exhibits unique advantages beyond selenium and sulfur as cathode materials for lithium storage. Herein, a dual-confined SeS2-based cathode configuration by encapsulating SeS2 in sulfur-doped mesoporous carbon (SMC) followed by 3D graphene (3DG) wrapping was proposed. The morphology and structure of the as-prepared 3DG-SMC-SeS2 nanocomposite were characterized by transmission electron microscope (TEM), scanning electron microscopy (SEM), and X-ray diffraction (XRD) technique. The results showed that SeS2 was uniformly distributed in the mesoporous channels of SMC matrix, and the SMC-SeS2 composite was well wrapped by the 3DG. Benefiting from the indispensable advantages of SeS2 and the uniquely designed host architecture, the 3DG-SMC-SeS2 composite cathode exhibited excellent cycling performance, accompanied by outstanding high rate capability. This novel SeS2-based cathode material provides a feasible strategy to surmount the main bottlenecks of current lithium-sulfur batteries.

参考文献

[1] SHI Y, ZHOU X Y, ZHANG J, et al.Nanostructured conductive polymer gels as a general framework material to improve electrochemical performance of cathode materials in li-ion batteries[J]. Nano letters, 2017, 17(3): 1906-1914. DOI: 10.1021/acs.nanolett.6b05227.
[2] DUNN B, KAMATH H, TARASCON J M.Electrical energy storage for the grid: a battery of choices[J]. Science, 2011, 334(6058): 928-935. DOI: 10.1126/science.1212741.
[3] MANTHIRAM A, FU Y Z, SU Y S.Challenges and prospects of lithium-sulfur batteries[J]. Accounts of chemical research, 2013, 46(5): 1125-1134. DOI: 10.1021/ar300179v.
[4] YIN Y X, XIN S, GUO Y G, et al.Lithium-sulfur batteries: electrochemistry, materials, and prospects[J]. Angewandte chemie-international edition, 2013, 52(50): 13186-13200. DOI: 10.1002/anie.201304762.
[5] LIU J, ZHANG Q, SUN Y K.Recent progress of advanced binders for Li-S batteries[J]. Journal of power sources, 2018, 396: 19-32. DOI: 10.1016/j.jpowsour. 2018.05.096.
[6] KIM J, LEE D J, JUNG H G, et al.An advanced lithium-sulfur battery[J]. Advanced functional materials, 2013, 23(8): 1076-1080. DOI: 10.1002/adfm.201200689.
[7] BRUCE P G, FREUNBERGER S A, HARDWICK L J, et al.Li-O2 and Li-S batteries with high energy storage[J]. Nature materials, 2012, 11(1): 19-29. DOI: 10.1038/nmat3191.
[8] LU S T, CHENG Y W, WU X H, et al.Significantly improved long-cycle stability in high-rate Li-S batteries enabled by coaxial graphene wrapping over sulfur-coated carbon nanofibers[J]. Nano letters, 2013, 13(6): 2485-2489. DOI: 10.1021/nl400543y.
[9] LI Z, YUAN L X, YIL Z Q, et al.Confined selenium within porous carbon nanospheres as cathode for advanced Li-Se batteries[J]. Nano Energy, 2014, 9: 229-236. DOI: 10.1016/j.nanoen.2014.07.012.
[10] YANG C P, XIN S, YIN Y X, et al.An advanced selenium-carbon cathode for rechargeable lithium-selenium batteries[J]. Angewandte chemie-international edition, 2013, 52(32): 8363-8367. DOI: 10.1002/anie.201303147.
[11] LEE J T, KIM H, OSCHATZ M, et al.Micro-and mesoporous carbide-derived carbon-selenium cathodes for high-performance lithium selenium batteries[J]. Advanced energy materials, 2015, 5(1): 1400981. DOI: 10.1002/aenm.201400981.
[12] ABOUIMRANE A, DAMBOURNET D, CHAPMAN K W, et al.A new class of lithium and sodium rechargeable batteries based on selenium and selenium-sulfur as a positive electrode[J]. Journal of the American chemical society, 2012, 134(10): 4505-4508. DOI: 10.1021/ja211766q.
[13] CUI Y J, ABOUIMRANE A, LU J, et al.(De)lithiation mechanism of Li/SeSx(x = 0-7) batteries determined by in situ synchrotron X-ray diffraction and X-ray absorption spectroscopy[J]. Journal of the American chemical society, 2013, 135(21): 8047-8056. DOI: 10.1021/ja402597g.
[14] JAYAPRAKASH N, SHEN J, MOGANTY S S, et al.Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries[J]. Angewandte chemie-international edition, 2011, 50(26): 5904-5908. DOI: 10.1002/anie. 201100637.
[15] YANG Y, ZHENG G Y, CUI Y.Nanostructured sulfur cathodes[J]. Chemical society reviews, 2013, 42(7): 3018-3032. DOI: 10.1039/c2cs35256g.
[16] YANG Z, YAO Z, LI G F, et al.Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction[J]. ACS nano, 2012, 6(1): 205-211. DOI: 10.1021/nn203393d.
[17] DI Y, XIAO Z H, YAN X S, et al.Nitrogen and sulfur dual-doped chitin-derived carbon/graphene composites as effective metal-free electrocatalysts for dye sensitized solar cells[J]. Applied surface science, 2018, 441: 807-815. DOI: 10.1016/j.apsusc.2018.02.071.
[18] KICIŃSKI W, SZALA M, BYSTRZEJEWSKI M. Sulfur-doped porous carbons: synthesis and applications[J]. Carbon, 2014, 68: 1-32. DOI: 10.1016/j.carbon.2013.11.004.
[19] SHAO D, TANG D P, YANG J W, et al.Nano-structured composite of Si/(S-doped-carbon nanowire network) as anode material for lithium-ion batteries[J]. Journal of power sources, 2015, 297: 344-350. DOI: 10.1016/j. jpowsour.2015.08.037.
[20] YUE L, WANG S Q, ZHAO X Y, et al.Nano-silicon composites using poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) as elastic polymer matrix and carbon source for lithium-ion battery anode[J]. Journal of materials chemistry, 2012, 22(3): 1094-1099. DOI: 10.1039/C1JM14568A.
[21] SU F Y, YOU C H, HE Y B, et al.Flexible and planar grapheme conductive additives for lithium-ion batteries[J]. Journal of materials chemistry, 2010, 20(43): 9644-9650. DOI: 10.1039/C0JM01633K.
[22] NOVOSELOV K S, FAL’KO V I, COLOMBO L, et al. A roadmap for graphene[J]. Nature, 2012, 490(7419): 192-200. DOI: 10.1038/nature11458.
[23] ZHAO S R, LI C M, WANG W K, et al.A novel porous nanocomposite of sulfur/carbon obtained from fish scales for lithium-sulfur batteries[J]. Journal of materials chemistry A, 2013, 1(10): 3334-3339. DOI: 10.1039/c3ta01220d.
[24] ZHANG Z A, JIANG S F, LAI Y Q, et al.Selenium sulfide@mesoporous carbon aerogel composite for rechargeable lithium batteries with good electrochemical performance[J]. Journal of power sources, 2015, 284: 95-102. DOI: 10.1016/j.jpowsour.2015.03.019.
文章导航

/