欢迎访问《新能源进展》官方网站!今天是

增强型地热系统水力压裂与声发射监测室内实验研究

  • 李庭樑 ,
  • 曹文炅 ,
  • 王亦伟 ,
  • 郭剑 ,
  • 蒋方明
展开
  • 1. 中国科学院广州能源研究所,广州 510640;
    2. 中国科学院可再生能源重点实验室,广州 510640;
    3. 广东省新能源和可再生能源研究开发与应用重点实验室,广州 510640;
    4. 中国科学院大学,北京 100049
李庭樑(1993-),男,硕士研究生,主要从事增强型地热系统数值模拟及相关实验研究。蒋方明(1973-),男,博士,研究员,博士生导师,中国科学院广州能源研究所先进能源系统实验室主任。2001年博士毕业后曾先后就职于德国的IMM公司、葡萄牙的阿维诺大学、美国的宾州州立大学,2011年4月开始回国工作。目前主要从事电化学能量/动力系统、增强型地热系统、微热流体系统、燃料电池水、热管理,以及高效节能技术/产品等研发工作。

收稿日期: 2019-01-03

  修回日期: 2019-02-23

  网络出版日期: 2019-06-29

基金资助

中国科学院A类战略性先导科技专项项目(XDA21060700); 国家自然科学基金项目(41702256); 广东省自然科学基金项目(2017A030310328); NSFC-广东省联合基金项目(U1401232); 广东省自然科学基金重大基础培育项目(2014A030308001); 广东省新能源和可再生能源研究开发与应用重点实验室基金项目(Y709JF1001)

Laboratory Study on Hydraulic Fracturing and Acoustic Emission Monitoring of Enhanced Geothermal System

  • LI Ting-liang ,
  • CAO Wen-jiong ,
  • WANG Yi-wei ,
  • GUO Jian ,
  • JIANG Fang-ming
Expand
  • 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China;
    3. Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China;
    4. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2019-01-03

  Revised date: 2019-02-23

  Online published: 2019-06-29

摘要

增强型地热系统(enhanced geothermal system, EGS)以干热岩热能的开采和利用为目的,正逐渐成为世界各国的重点研究对象。除了建立EGS野外试验场开展实际场地研究和技术示范外,亦有必要开展相关的室内实验研究,研究或验证相关关键技术,为野外场地建设提供理论基础和技术支持。本课题组自主研发了模拟地下真实环境的实验系统,开展了尺寸为400 mm × 400 mm × 400 mm的花岗岩水力压裂实验,通过声发射事件监测到的声发射数据,分析了裂缝的扩展规律,并进行了初步的水力连通实验,探讨了各采出井的流量分配,研究了从注入井到生产井的水力连通特性。结果可为数值模拟提供基础数据,为野外试验场地的建设提供参考。

本文引用格式

李庭樑 , 曹文炅 , 王亦伟 , 郭剑 , 蒋方明 . 增强型地热系统水力压裂与声发射监测室内实验研究[J]. 新能源进展, 2019 , 7(3) : 241 -248 . DOI: 10.3969/j.issn.2095-560X.2019.03.006

Abstract

Aiming at extraction and utilization of hot dry rock thermal energy, enhanced geothermal system (EGS) is now a research focus across the world. Besides constructing field test site to carry out experimental studies and technical demonstration, it is also necessary to carry out lab tests to study or verify relevant key technologies. Laboratory tests can provide theoretical basis and technical support for the construction of field sites. Herein, a self-developed indoor experimental EGS was built to experimental system, which can simulate the underground pressure and temperature environment. With this experimental setup, the hydraulic fracturing experiment of a 400 mm × 400 mm × 400 mm granite block was carried out. Based on the monitored acoustic emission data, fracture growth and propagation in the rock block and perform preliminary hydraulic connection test were analyze. Flow distribution in the four surrounding production wells was evaluated, and the hydraulic connectivity from injection well to each production well was explored. The results obtained can provide basic data for numerical simulation and may have some reference value for the construction of real field test sites.

参考文献

[1] TESTER J W, ANDERSON B J, BATCHELOR A S, et al.The future of geothermal energy: impact of enhanced geothermal systems (EGS) on the United States in the 21st century[R]. Washington, DC: Massachusetts Institute of Technology, 2006.
[2] 汪集暘, 胡圣标, 庞忠和, 等. 中国大陆干热岩地热资源潜力评估[J]. 科技导报, 2012, 30(32): 25-31. DOI: 10.3981/j.issn.1000-7857.2012.32.003.
[3] 许天福, 张延军, 曾昭发, 等. 增强型地热系统(干热岩)开发技术进展[J]. 科技导报, 2012, 30(32): 42-45. DOI: 10.3981/j.issn.1000-7857.2012.32.005.
[4] 蔺文静, 刘志明, 马峰, 等. 我国陆区干热岩资源潜力估算[J]. 地球学报, 2012, 33(5): 807-811. DOI: 10.3975/cagsb.2012.05.12.
[5] 郭剑, 陈继良, 曹文炅, 等. 增强型地热系统研究综述[J]. 电力建设, 2014, 35(4): 10-24. DOI: 10.3969/j. issn.1000-7229.2014.04.003.
[6] 陆川, 王贵玲. 干热岩研究现状与展望[J]. 科技导报, 2015, 33(19): 13-21. DOI: 10.3981/j.issn.1000-7857.2015.19.001.
[7] VALLEY B, DEZAYES C, GENTER A.Multi-scale fracturing in the Soultz-sous-Forêts basement from borehole image analyses[C]//Proceedings of EHDRA Scientific Conference. France: EHDRA, 2007: 28.
[8] DEZAYES C, GENTER A, VALLEY B.Overview of the fracture network at different scales within the granite reservoir of the EGS Soultz site (Alsace, France)[C]// Proceedings of the World Geothermal Congress 2010. Bali, Indonesia: World Geothermal Congress, 2010: 13.
[9] SAUSSE J, DEZAYES C, DORBATH L, et al.3D model of fracture zones at Soultz-sous-Forêts based on geological data, image logs, induced microseismicity and vertical seismic profiles[J]. Comptes rendus geoscience, 2010, 342(7/8): 531-545. DOI: 10.1016/j.crte.2010.01.011.
[10] BRUEL D.Impact of induced thermal stresses during circulation tests in an engineered fractured geothermal reservoir: example of the Soultz-sous-Forets European hot fractured rock geothermal project, Rhine Graben, France[J]. Oil & gas science and technology, 2002, 57(5): 459-470. DOI: 10.2516/ogst:2002030.
[11] 王晓星, 吴能友, 张可霓, 等. 增强型地热系统开发过程中的多场耦合问题[J]. 水文地质工程地质, 2012, 39(2): 126-130. DOI: 10.16030/j.cnki.issn.1000-3665.2012.02.030.
[12] TARON J, ELSWORTH D.Coupled mechanical and chemical processes in engineered geothermal reservoirs with dynamic permeability[J]. International journal of rock mechanics and mining sciences, 2010, 47(8): 1339-1348. DOI: 10.1016/j.ijrmms.2010.08.021.
[13] CAO W J, HUANG W B, JIANG F M.Numerical study on variable thermophysical properties of heat transfer fluid affecting EGS heat extraction[J]. International journal of heat and mass transfer, 2016, 92: 1205-1217. DOI: 10.1016/j.ijheatmasstransfer.2015.09.081.
[14] CAO W J, HUANG W B, JIANG F M.A novel thermal-hydraulic-mechanical model for the enhanced geothermal system heat extraction[J]. International journal of heat and mass transfer, 2016, 100: 661-671. DOI: 10.1016/j.ijheatmasstransfer.2016.04.078.
[15] HICKS T W, PINE R J, WILLIS-RICHARDS J, et al.A hydro-thermo-mechanical numerical model for HDR geothermal reservoir evaluation[J]. International journal of rock mechanics and mining sciences & geomechanics abstracts, 1996, 33(5): 499-511. DOI: 10.1016/0148-9062(96)00002-2.
[16] KOLDITZ O, CLAUSER C.Numerical simulation of flow and heat transfer in fractured crystalline rocks: application to the hot dry rock site in Rosemanowes (U.K.)[J]. Geothermics, 1998, 27(1): 1-23. DOI: 10.1016/S0375-6505(97)00021-7.
[17] YANG S Y, YEH H D.Modeling heat extraction from hot dry rock in a multi-well system[J]. Applied thermal engineering, 2009, 29(8/9): 1676-1681. DOI: 10.1016/j.applthermaleng.2008.07.020.
[18] KALININA E A, MCKENNA S A, HADGU T, et al.Analysis of the effects of heterogeneity on heat extraction in an EGS represented with the continuum fracture model[R]. Stanford, California: Sandia National Lab, 2012.
[19] SHAIK A R, RAHMAN S S, TRAN N H, et al.Numerical simulation of fluid-rock coupling heat transfer in naturally fractured geothermal system[J]. Applied thermal engineering, 2011, 31(10): 1600-1606. DOI: 10.1016/j.applthermaleng.2011.01.038.
[20] JIANG F M, LUO L, CHEN J L.A novel three-dimensional transient model for subsurface heat exchange in enhanced geothermal systems[J]. International communications in heat and mass transfer, 2013, 41: 57-62. DOI: 10.1016/j.icheatmasstransfer.2012.11.003.
[21] JIANG F M, CHEN J L, HUANG W B, et al.A three-dimensional transient model for EGS subsurface thermo-hydraulic process[J]. Energy, 2014, 72: 300-310. DOI: 10.1016/j.energy.2014.05.038.
[22] CHEN D, WYBORN D.Habanero field tests in the Cooper Basin, Australia: a proof-of-concept for EGS[J]. Transactions-geothermal resources council, 2009, 33(1): 159-164.
[23] LLANOS E M, ZARROUK S J, HOGARTH R A.Simulation of the habanero enhanced geothermal system (EGS), Australia[C]//Proceedings of the World Geothermal Congress 2015. Melbourne, Australia: World Geothermal Congress, 2015.
[24] 李庭樑, 黄文博, 曹文炅, 等. EGS热储基于微震数据反演模化及其采热性能分析[J]. 化工学报, 2018, 69(12):
5001-5010. DOI: 10.11949/j.issn.0438-1157.20180769.
[25] ISHIDA T, CHEN Q, MIZUTA Y.Effect of injected water on hydraulic fracturing deduced from acoustic emission monitoring[M]//TALEBI S. Seismicity Associated with Mines, Reservoirs and Fluid Injections. Birkhäuser, Basel: Birkhäuser Verlag, 1997: 627-646.
[26] 陈勉, 庞飞, 金衍. 大尺寸真三轴水力压裂模拟与分析[J]. 岩石力学与工程学报, 2000, 19(S1): 868-872. DOI: 10.3321/j.issn:1000-6915.2000.z1.010.
[27] REINICKE A, RYBACKI E, STANCHITS S, et al. Hydraulic fracturing stimulation techniques and formation damage mechanisms—Implications from laboratory testing of tight sandstone-proppant systems[J]. Geochemistry, 2010, 70 Suppl 3: 107-117. DOI: 10.1016/j.chemer.2010. 05.016.
[28] 尹光志, 李铭辉, 许江, 等. 多功能真三轴流固耦合试验系统的研制与应用[J]. 岩石力学与工程学报, 2015, 34(12): 2436-2445. DOI: 10.13722/j.cnki.jrme.2015.0050.
[29] 侯振坤, 杨春和, 王磊, 等. 大尺寸真三轴页岩水平井水力压裂物理模拟试验与裂缝延伸规律分析[J]. 岩土力学, 2016, 37(2): 407-414. DOI: 10.16285/j.rsm.2016. 02.013.
[30] 许天福, 张延军, 于子望, 等. 干热岩水力压裂实验室模拟研究[J]. 科技导报, 2015, 33(19): 35-39. DOI: 10.3981/j.issn.1000-7857.2015.19.004.
[31] 黄炳香, 程庆迎, 刘长友, 等. 煤岩体水力致裂理论及其工艺技术框架[J]. 采矿与安全工程学报, 2011, 28(2): 167-173. DOI: 10.3969/j.issn.1673-3363.2011.02.001.
[32] 黄炳香. 煤岩体水力致裂弱化的理论与应用研究[J]. 煤炭学报, 2010, 35(10): 1765-1766. DOI: 10.13225/j. cnki.jccs.2010.10.020.
[33] ZANG A N, OYE V, JOUSSET P, et al.Analysis of induced seismicity in geothermal reservoirs-An overview[J]. Geothermics, 2014, 52: 6-21. DOI: 10.1016/j.geothermics. 2014.06.005.
[34] 李宏, 海江田秀志, 大西浩史. 雄胜高温岩体地热开发的数值计算进展[J]. 岩石力学与工程学报, 2003, 22(6): 965-968. DOI: 10.3321/j.issn:1000-6915.2003.06.014.
[35] SHAPIRO S A, HUENGES E, BORM G.Estimating the crust permeability from fluid-injection-induced seismic emission at the KTB site[J]. Geophysical journal international, 1997, 131(2): F15-F18. DOI: 10.1111/j.1365-246X.1997. tb01215.x.
文章导航

/