[1] 国家统计局. 中国统计年鉴(2018)[M]. 北京: 中国统计出版社, 2018.
[2] ZHOU H, LONG Y Q, MENG A H, et al.Classification of municipal solid waste components for thermal conversion in waste-to-energy research[J]. Fuel, 2015, 145: 151-157. DOI: 10.1016/j.fuel.2014.12.015.
[3] 袁浩然, 鲁涛, 熊祖鸿, 等. 城市生活垃圾热解气化技术研究进展[J]. 化工进展, 2012, 31(2): 431-427. DOI: 10.16085/j.issn.1000-6613.2012.02.035.
[4] BENEROSO D, BERMÚDEZ J M, ARENILLAS A, et al. Oil fractions from the pyrolysis of diverse organic wastes: the different effects of conventional and microwave induced pyrolysis[J]. Journal of analytical and applied pyrolysis, 2015, 114: 256-264. DOI: 10.1016/j.jaap.2015.06.006.
[5] EFIKA E C, ONWUDILI J A, WILLIAMS P T.Products from the high temperature pyrolysis of RDF at slow and rapid heating rates[J]. Journal of analytical and applied pyrolysis, 2015, 112: 14-22. DOI: 10.1016/j.jaap.2015. 01.004.
[6] PRABHANSU, KARMAKAR M K, CHANDRA P, et al. A review on the fuel gas cleaning technologies in gasification process[J]. Journal of environmental chemical engineering, 2015, 3(2): 689-702. DOI: 10.1016/j.jece.2015.02.011.
[7] MANIATIS K, BEENACKERS A A C M. Tar protocols. IEA bioenergy gasification task[J]. Biomass and bioenergy, 2000, 18(1): 1-4. DOI: 10.1016/S0961-9534(99)00072-0.
[8] 刘波, 李世青, 廖洪强, 等. 煤与城市生活垃圾共热解焦油成分分析[J]. 燃料与化工, 2011, 42(6): 1-4. DOI: 10.16044/j.cnki.rlyhg.2011.06.030.
[9] 张振国, 廖洪强, 余广炜, 等. 废塑料与煤共焦化所得焦油成分分析[J]. 煤化工, 2009, 37(4): 41-44. DOI: 10.3969/j.issn.1005-9598.2009.04.011.
[10] COLL R, SALVADÓ J, FARRIOL X, et al.Steam reforming model compounds of biomass gasification tars: conversion at different operating conditions and tendency towards coke formation[J]. Fuel processing technology, 2001, 74(1): 19-31. DOI: 10.1016/S0378-3820(01)00214-4.
[11] MILNE T A, EVANS R, ABATZOGLOU N.Biomass gasifier “tars”: their nature, formation, and conversion[R]. Golden, Colorado: NREL, 1998.
[12] ANIS S, ZAINAL Z A.Tar reduction in biomass producer gas via mechanical, catalytic and thermal methods: a review[J]. Renewable and sustainable energy reviews, 2011, 15(5): 2355-2377. DOI: 10.1016/j.rser.2011.02.018.
[13] LIU S Y, MEI D H, WANG L, et al.Steam reforming of toluene as biomass tar model compound in a gliding arc discharge reactor[J]. Chemical engineering journal, 2017, 307: 793-802. DOI: 10.1016/j.cej.2016.08.005.
[14] PHUPHUAKRAT T, NAMIOKA T, YOSHIKAWA K.Absorptive removal of biomass tar using water and oily materials[J]. Bioresource technology, 2011, 102(2): 543-549. DOI: 10.1016/j.biortech.2010.07.073.
[15] ZHU F S, LI X D, ZHANG H, et al.Destruction of toluene by rotating gliding arc discharge[J]. Fuel, 2016, 176: 78-85. DOI: 10.1016/j.fuel.2016.02.065.
[16] TAO K, OHTA N, LIU G Q, et al.Plasma enhanced catalytic reforming of biomass tar model compound to syngas[J]. Fuel, 2013, 104: 53-57. DOI: 10.1016/j.fuel. 2010.05.044.
[17] 吴创之. 生物质气化发电技术讲座(2)——生物质气化工艺的设计与选用[J]. 可再生能源, 2003(2): 51-52. DOI: 10.3969/j.issn.1671-5292.2003.02.022.
[18] RIOS M L V, GONZÁLEZ A M, LORA E E S, et al. Reduction of tar generated during biomass gasification: a review[J]. Biomass and bioenergy, 2018, 108: 345-370. DOI: 10.1016/j.biombioe.2017.12.002.
[19] DEVI L, PTASINSKI K J, JANSSEN F J J G. A review of the primary measures for tar elimination in biomass gasification processes[J]. Biomass and bioenergy, 2003, 24(2): 125-140. DOI: 10.1016/S0961-9534(02)00102-2.
[20] KNIGHT R A.Experience with raw gas analysis from pressurized gasification of Biomass[J]. Biomass and bioenergy, 2000, 18(1): 67-77. DOI: 10.1016/S0961- 9534(99)00070-7.
[21] DE SALES C A V B, YEPES MAYA D M, SILVA LORA E E, et al. Experimental study on biomass (eucalyptus spp.) gasification in a two-stage downdraft reactor by using mixtures of air, saturated steam and oxygen as gasifying agents[J]. Energy conversion and management, 2017, 145: 314-323. DOI: 10.1016/j.enconman.2017.04.101.
[22] VEKSHA A, GIANNIS A, YUAN G A, et al.Distribution and modeling of tar compounds produced during downdraft gasification of municipal solid waste[J]. Renewable energy, 2019, 136: 1294-1303. DOI: 10.1016/j.renene.2018.09.104.
[23] 朱锡锋. 生物质热解原理与技术[M]. 合肥: 中国科学技术大学出版社, 2006: 187-188.
[24] RAKESH N, DASAPPA S.A critical assessment of tar generated during biomass gasification- Formation, evaluation, issues and mitigation strategies[J]. Renewable and Sustainable Energy Reviews, 2018, 91: 1045-1064. DOI: 10.1016/j.rser.2018.04.017.
[25] DE DIEGO L F, GARCÍA-LABIANO F, GAYÁN P, et al. Tar abatement for clean syngas production during biomass gasification in a dual fluidized bed[J]. Fuel processing technology, 2016, 152: 116-123. DOI: 10.1016/j.fuproc.2016.05.042.
[26] 孙云娟, 蒋剑春. 生物质气化过程中焦油的去除方法综述[J]. 生物质化学工程, 2006, 40(2): 31-35.
[27] SHEN Y F, YOSHIKAWA K.Recent progresses in catalytic tar elimination during biomass gasification or pyrolysis-a review[J]. Renewable and sustainable energy reviews, 2013, 21: 371-392. DOI: 10.1016/j.rser.2012. 12.062.
[28] 张全国, 孔书轩, 刘圣勇, 等. 生物质燃气净化技术及其装置研究[J]. 中国沼气, 2000, 18(1): 43-45.
[29] JESS A.Mechanisms and kinetics of thermal reactions of aromatic hydrocarbons from pyrolysis of solid fuels[J]. Fuel, 1996, 75(12): 1441-1448. DOI: 10.1016/0016- 2361(96)00136-6.
[30] BO Z, YAN J H, LI X D, et al.Scale-up analysis and development of gliding arc discharge facility for volatile organic compounds decomposition[J]. Journal of hazardous materials, 2008, 155(3): 494-501. DOI: 10.1016/j.jhazmat.2007.11.105.
[31] YAN J H, PENG Z, LU S Y, et al.Destruction of PCDD/Fs by gliding arc discharges[J]. Journal of environmental sciences, 2007, 19(11): 1404-1408. DOI: 10.1016/s1001-0742(07)60229-0.
[32] SPASOVA B, TIEMANN D, O'CONNELL M, et al. Synthesis gas production from methane and propane in a miniaturized GlidArc® reformer[J]. International journal of hydrogen energy, 2014, 39(24): 12657-12666. DOI: 10.1016/j.ijhydene.2014.06.065.
[33] MURADOV N, SMITH F, BOKERMAN G.Methane activation by nonthermal plasma generated carbon aerosols[J]. The journal of physical chemistry C, 2009, 113(22): 9737-9747. DOI: 10.1021/jp900124b.
[34] 杜长明, 严建华, 李晓东, 等. 利用滑动弧放电脱除烟气中多环芳烃和碳黑颗粒[J]. 中国电机工程学报, 2006, 26(1): 77-81. DOI: 10.13334/j.0258-8013.pcsee. 2006.01.015.
[35] DU C M, YAN J H, LI X D, et al.Simultaneous removal of polycyclic aromatic hydrocarbons and soot particles from flue gas by gliding arc discharge treatment[J]. Plasma chemistry and plasma processing, 2006, 26(5): 517-525. DOI: 10.1007/s11090-006-9033-3.
[36] 颜欣. 磁旋滑动弧等离子体裂解生活垃圾气化焦油的实验研究[D]. 杭州: 浙江大学, 2018.
[37] MUTAF-YARDIMCI O, SAVELIEV A V, FRIDMAN A A, et al.Thermal and nonthermal regimes of gliding arc discharge in air flow[J]. Journal of applied physics, 2000, 87(4): 1632-1641. DOI: 10.1063/1.372071.
[38] HUANG H, TANG L.Treatment of organic waste using thermal plasma pyrolysis technology[J]. Energy conversion & management, 2007, 48(4): 1331-1337. DOI: 10.1016/j.enconman.2006.08.013.
[39] SANLISOY A, CARPINLIOGLU M O.A review on plasma gasification for solid waste disposal[J]. International journal of hydrogen energy, 2017, 42(2): 1361-1365. DOI: 10.1016/j.ijhydene.2016.06.008.
[40] XIE Q L, BORGES F C, CHENG Y L, et al.Fast microwave-assisted catalytic gasification of biomass for syngas production and tar removal[J]. Bioresource technology, 2014, 156: 291-296. DOI: 10.1016/j.biortech.2014.01.057.
[41] WNUKOWSKI M, JAMRÓZ P. Microwave plasma treatment of simulated biomass syngas: Interactions between the permanent syngas compounds and their influence on the model tar compound conversion[J]. Fuel processing technology, 2018, 173: 229-242. DOI: 10.1016/j.fuproc.2018.01.025.
[42] CHEN J H, DAVIDSON J H.Model of the negative DC corona plasma: comparison to the positive DC corona plasma[J]. Plasma chemistry and plasma processing, 2003, 23(1): 83-102. DOI: 10.1023/A:1022468803203.
[43] NAIR S A, YAN K, PEMEN A J M, et al. A high-temperature pulsed corona plasma system for fuel gas cleaning[J]. Journal of electrostatics, 2004, 61(2): 117-127. DOI: 10.1016/j.elstat.2004.02.002.
[44] BOEUF J P, BERNECKER B, CALLEGARI T, et al.Generation, annihilation, dynamics and self-organized patterns of filaments in dielectric barrier discharge plasmas[J]. Applied physics letters, 2012, 100(24): 244108. DOI: 10.1063/1.4729767.
[45] SALEEM F, ZHANG K, HARVEY A.Plasma-assisted decomposition of a biomass gasification tar analogue into lower hydrocarbons in a synthetic product gas using a dielectric barrier discharge reactor[J]. Fuel, 2019, 235: 1412-1419. DOI: 10.1016/j.fuel.2018.08.010.
[46] WOOLCOCK P J, BROWN R C.A review of cleaning technologies for biomass-derived syngas[J]. Biomass and bioenergy, 2013, 52: 54-84. DOI: 10.1016/j.biombioe. 2013.02.036.
[47] HU M, LAGHARI M, CUI B H, et al.Catalytic cracking of biomass tar over char supported nickel catalyst[J]. Energy, 2018, 145: 228-237. DOI: 10.1016/j.energy. 2017.12.096.
[48] 胡万勇, 王训, 杨娉, 等. Ni/钙铝石催化剂对焦油模拟物甲苯的催化研究[J]. 环境工程, 2017, 35(7): 116-120, 125. DOI: 10.13205/j.hjgc.201707023.
[49] LU P, HUANG Q X, CHI Y, et al.Catalytic cracking of tar derived from the pyrolysis of municipal solid waste fractions over biochar[J]. Proceedings of the combustion institute, 2018, 37(3): 2673-2680. DOI: 10.1016/j.proci. 2018.06.051.
[50] GUO F Q, LI X L, LIU Y, et al.Catalytic cracking of biomass pyrolysis tar over char-supported catalysts[J]. Energy conversion and management, 2018, 167: 81-90. DOI: 10.1016/j.enconman.2018.04.094.
[51] QUITETE C P B, SOUZA M M V M. Application of Brazilian dolomites and mixed oxides as catalysts in tar removal system[J]. Applied catalysis A: general, 2017, 536: 1-8. DOI: 10.1016/j.apcata.2017.02.014.
[52] MENG J G, WANG X B, ZHAO Z L, et al.Highly abrasion resistant thermally fused olivine as in-situ catalysts for tar reduction in a circulating fluidized bed biomass gasifier[J]. Bioresource technology, 2018, 268: 212-220. DOI: 10.1016/j.biortech.2018.07.135.
[53] VIRGINIE M, ADÁNEZ J, COURSON C, et al. Effect of Fe-olivine on the tar content during biomass gasification in a dual fluidized bed[J]. Applied catalysis B: environmental, 2012, 121-122: 214-222. DOI: 10.1016/j.apcatb.2012.04.005.
[54] MCFARLAN A, MAFFEI N.Assessing tar removal in biomass gasification by steam reforming over a commercial automotive catalyst[J]. Fuel, 2018, 233: 291-298. DOI: 10.1016/j.fuel.2018.06.020.
[55] 王伟, 王兴富. 浅述中低温煤焦油加氢工艺[J]. 化工管理, 2017(32): 51. DOI: 10.3969/j.issn.1008-4800. 2017.32.049.
[56] 何选明, 陈芸, 戴丹, 等. 生物质焦油改性提质制取燃料油的研究进展[J]. 能源化工, 2006, 37(3): 24-27. DOI: 10.3969/j.issn.1006-7906.2016.03.005.
[57] 崔文岗, 李冬, 樊安, 等. 低温煤焦油加氢制备清洁燃料油品中试试验研究[J]. 化工进展, 2018, 37(6): 2192-2202. DOI: 10.16085/j.issn.1000-6613.2017-1433.
[58] 汤子强, 赵金安, 王志忠. 低温煤焦油与废旧塑料共熔油化的研究[J]. 燃料化学学报, 1999, 27(5): 403-407.
[59] CHEN D Z, YIN L J, WANG H, et al.Pyrolysis technologies for municipal solid waste: A review[J]. Waste management, 2014, 34(12): 2466-2486. DOI: 10.1016/j. wasman.2014.08.004.
[60] KAN T, WANG H, LI C, et al.Liquid fuels from ethylene tar by two-stage catalytic hydroprocessing[J]. Energy sources, part A: recovery, utilization, and environmental effects, 2015, 37(21): 2317-2322. DOI: 10.1080/15567036.2011.613892.
[61] BOULLOSA-EIRAS S, LØDENG R, BERGEM H, et al. Catalytic hydrodeoxygenation (HDO) of phenol over supported molybdenum carbide, nitride, phosphide and oxide catalysts[J]. Catalysis today, 2014, 223: 44-53. DOI: 10.1016/j.cattod.2013.09.044.
[62] WANG Y P, DAI L L, FAN L L, et al.Catalytic co-pyrolysis of waste vegetable oil and high density polyethylene for hydrocarbon fuel production[J]. Waste management, 2017, 61: 276-282. DOI: 10.1016/j.wasman. 2017.01.010.
[63] FENG Z, ZHAO J M, ROCKWELL J, et al.Direct liquefaction of waste plastics and coliquefaction of coal- plastic mixtures[J]. Fuel processing technology, 1996, 49(1/3): 17-30. DOI: 10.1016/S0378-3820(96)01036-3.