欢迎访问《新能源进展》官方网站!今天是

可燃固废焦油处理的研究进展

  • 程磊磊 ,
  • 顾菁 ,
  • 王亚琢 ,
  • 袁浩然
展开
  • 1. 中国科学院广州能源研究所,广州 510640;
    2. 中国科学院可再生能源重点研究室,广州 510640;
    3. 广东省新能源和可再生能源研究开发与应用重点研究室,广州 510640;
    4. 中国科学院大学,北京 100049
程磊磊(1995-),男,硕士研究生,主要从事可燃固废热化学转化研究。顾菁(1982-),女,博士,副研究员,主要从事可燃固废研究。

收稿日期: 2018-12-28

  修回日期: 2019-01-28

  网络出版日期: 2019-06-29

基金资助

国家自然科学基金青年基金项目(5160060449)

Research Progress in Combustible Solid Waste Tar Treatment

  • CHENG Lei-lei ,
  • GU Jing ,
  • WANG Ya-zhuo ,
  • YUAN Hao-ran
Expand
  • 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China;
    3. Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China;
    4. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2018-12-28

  Revised date: 2019-01-28

  Online published: 2019-06-29

摘要

热解气化技术是实现可燃固废资源化利用的主流技术,有必要对热解气化过程中的副产物焦油进行有效处理。本文介绍了可燃固废焦油的组成、危害及处理方法,对原位处理法、物理法和热化学法等焦油处理技术进行了总结。提出一种将焦油与聚乙烯混合进行加氢处理的方法,利用聚乙烯中富含的氢元素,有望提高焦油利用的经济性。

本文引用格式

程磊磊 , 顾菁 , 王亚琢 , 袁浩然 . 可燃固废焦油处理的研究进展[J]. 新能源进展, 2019 , 7(3) : 249 -257 . DOI: 10.3969/j.issn.2095-560X.2019.03.007

Abstract

Pyrolysis gasification technology is a mainstream technology for resource utilization of combustible solid waste. The by-product tar in the pyrolysis gasification needs to be processed effectively. In this paper, the composition, hazards, and treatment methods of combustible solid waste tar were described. The tar treatment techniques such as in-situ treatment, physical method and thermochemical method were summarized. A method of mixing tar with polyethylene for hydrogenation was proposed and the use of rich hydrogen in polyethylene was expected to improve the economic efficiency of tar utilization.

参考文献

[1] 国家统计局. 中国统计年鉴(2018)[M]. 北京: 中国统计出版社, 2018.
[2] ZHOU H, LONG Y Q, MENG A H, et al.Classification of municipal solid waste components for thermal conversion in waste-to-energy research[J]. Fuel, 2015, 145: 151-157. DOI: 10.1016/j.fuel.2014.12.015.
[3] 袁浩然, 鲁涛, 熊祖鸿, 等. 城市生活垃圾热解气化技术研究进展[J]. 化工进展, 2012, 31(2): 431-427. DOI: 10.16085/j.issn.1000-6613.2012.02.035.
[4] BENEROSO D, BERMÚDEZ J M, ARENILLAS A, et al. Oil fractions from the pyrolysis of diverse organic wastes: the different effects of conventional and microwave induced pyrolysis[J]. Journal of analytical and applied pyrolysis, 2015, 114: 256-264. DOI: 10.1016/j.jaap.2015.06.006.
[5] EFIKA E C, ONWUDILI J A, WILLIAMS P T.Products from the high temperature pyrolysis of RDF at slow and rapid heating rates[J]. Journal of analytical and applied pyrolysis, 2015, 112: 14-22. DOI: 10.1016/j.jaap.2015. 01.004.
[6] PRABHANSU, KARMAKAR M K, CHANDRA P, et al. A review on the fuel gas cleaning technologies in gasification process[J]. Journal of environmental chemical engineering, 2015, 3(2): 689-702. DOI: 10.1016/j.jece.2015.02.011.
[7] MANIATIS K, BEENACKERS A A C M. Tar protocols. IEA bioenergy gasification task[J]. Biomass and bioenergy, 2000, 18(1): 1-4. DOI: 10.1016/S0961-9534(99)00072-0.
[8] 刘波, 李世青, 廖洪强, 等. 煤与城市生活垃圾共热解焦油成分分析[J]. 燃料与化工, 2011, 42(6): 1-4. DOI: 10.16044/j.cnki.rlyhg.2011.06.030.
[9] 张振国, 廖洪强, 余广炜, 等. 废塑料与煤共焦化所得焦油成分分析[J]. 煤化工, 2009, 37(4): 41-44. DOI: 10.3969/j.issn.1005-9598.2009.04.011.
[10] COLL R, SALVADÓ J, FARRIOL X, et al.Steam reforming model compounds of biomass gasification tars: conversion at different operating conditions and tendency towards coke formation[J]. Fuel processing technology, 2001, 74(1): 19-31. DOI: 10.1016/S0378-3820(01)00214-4.
[11] MILNE T A, EVANS R, ABATZOGLOU N.Biomass gasifier “tars”: their nature, formation, and conversion[R]. Golden, Colorado: NREL, 1998.
[12] ANIS S, ZAINAL Z A.Tar reduction in biomass producer gas via mechanical, catalytic and thermal methods: a review[J]. Renewable and sustainable energy reviews, 2011, 15(5): 2355-2377. DOI: 10.1016/j.rser.2011.02.018.
[13] LIU S Y, MEI D H, WANG L, et al.Steam reforming of toluene as biomass tar model compound in a gliding arc discharge reactor[J]. Chemical engineering journal, 2017, 307: 793-802. DOI: 10.1016/j.cej.2016.08.005.
[14] PHUPHUAKRAT T, NAMIOKA T, YOSHIKAWA K.Absorptive removal of biomass tar using water and oily materials[J]. Bioresource technology, 2011, 102(2): 543-549. DOI: 10.1016/j.biortech.2010.07.073.
[15] ZHU F S, LI X D, ZHANG H, et al.Destruction of toluene by rotating gliding arc discharge[J]. Fuel, 2016, 176: 78-85. DOI: 10.1016/j.fuel.2016.02.065.
[16] TAO K, OHTA N, LIU G Q, et al.Plasma enhanced catalytic reforming of biomass tar model compound to syngas[J]. Fuel, 2013, 104: 53-57. DOI: 10.1016/j.fuel. 2010.05.044.
[17] 吴创之. 生物质气化发电技术讲座(2)——生物质气化工艺的设计与选用[J]. 可再生能源, 2003(2): 51-52. DOI: 10.3969/j.issn.1671-5292.2003.02.022.
[18] RIOS M L V, GONZÁLEZ A M, LORA E E S, et al. Reduction of tar generated during biomass gasification: a review[J]. Biomass and bioenergy, 2018, 108: 345-370. DOI: 10.1016/j.biombioe.2017.12.002.
[19] DEVI L, PTASINSKI K J, JANSSEN F J J G. A review of the primary measures for tar elimination in biomass gasification processes[J]. Biomass and bioenergy, 2003, 24(2): 125-140. DOI: 10.1016/S0961-9534(02)00102-2.
[20] KNIGHT R A.Experience with raw gas analysis from pressurized gasification of Biomass[J]. Biomass and bioenergy, 2000, 18(1): 67-77. DOI: 10.1016/S0961- 9534(99)00070-7.
[21] DE SALES C A V B, YEPES MAYA D M, SILVA LORA E E, et al. Experimental study on biomass (eucalyptus spp.) gasification in a two-stage downdraft reactor by using mixtures of air, saturated steam and oxygen as gasifying agents[J]. Energy conversion and management, 2017, 145: 314-323. DOI: 10.1016/j.enconman.2017.04.101.
[22] VEKSHA A, GIANNIS A, YUAN G A, et al.Distribution and modeling of tar compounds produced during downdraft gasification of municipal solid waste[J]. Renewable energy, 2019, 136: 1294-1303. DOI: 10.1016/j.renene.2018.09.104.
[23] 朱锡锋. 生物质热解原理与技术[M]. 合肥: 中国科学技术大学出版社, 2006: 187-188.
[24] RAKESH N, DASAPPA S.A critical assessment of tar generated during biomass gasification- Formation, evaluation, issues and mitigation strategies[J]. Renewable and Sustainable Energy Reviews, 2018, 91: 1045-1064. DOI: 10.1016/j.rser.2018.04.017.
[25] DE DIEGO L F, GARCÍA-LABIANO F, GAYÁN P, et al. Tar abatement for clean syngas production during biomass gasification in a dual fluidized bed[J]. Fuel processing technology, 2016, 152: 116-123. DOI: 10.1016/j.fuproc.2016.05.042.
[26] 孙云娟, 蒋剑春. 生物质气化过程中焦油的去除方法综述[J]. 生物质化学工程, 2006, 40(2): 31-35.
[27] SHEN Y F, YOSHIKAWA K.Recent progresses in catalytic tar elimination during biomass gasification or pyrolysis-a review[J]. Renewable and sustainable energy reviews, 2013, 21: 371-392. DOI: 10.1016/j.rser.2012. 12.062.
[28] 张全国, 孔书轩, 刘圣勇, 等. 生物质燃气净化技术及其装置研究[J]. 中国沼气, 2000, 18(1): 43-45.
[29] JESS A.Mechanisms and kinetics of thermal reactions of aromatic hydrocarbons from pyrolysis of solid fuels[J]. Fuel, 1996, 75(12): 1441-1448. DOI: 10.1016/0016- 2361(96)00136-6.
[30] BO Z, YAN J H, LI X D, et al.Scale-up analysis and development of gliding arc discharge facility for volatile organic compounds decomposition[J]. Journal of hazardous materials, 2008, 155(3): 494-501. DOI: 10.1016/j.jhazmat.2007.11.105.
[31] YAN J H, PENG Z, LU S Y, et al.Destruction of PCDD/Fs by gliding arc discharges[J]. Journal of environmental sciences, 2007, 19(11): 1404-1408. DOI: 10.1016/s1001-0742(07)60229-0.
[32] SPASOVA B, TIEMANN D, O'CONNELL M, et al. Synthesis gas production from methane and propane in a miniaturized GlidArc® reformer[J]. International journal of hydrogen energy, 2014, 39(24): 12657-12666. DOI: 10.1016/j.ijhydene.2014.06.065.
[33] MURADOV N, SMITH F, BOKERMAN G.Methane activation by nonthermal plasma generated carbon aerosols[J]. The journal of physical chemistry C, 2009, 113(22): 9737-9747. DOI: 10.1021/jp900124b.
[34] 杜长明, 严建华, 李晓东, 等. 利用滑动弧放电脱除烟气中多环芳烃和碳黑颗粒[J]. 中国电机工程学报, 2006, 26(1): 77-81. DOI: 10.13334/j.0258-8013.pcsee. 2006.01.015.
[35] DU C M, YAN J H, LI X D, et al.Simultaneous removal of polycyclic aromatic hydrocarbons and soot particles from flue gas by gliding arc discharge treatment[J]. Plasma chemistry and plasma processing, 2006, 26(5): 517-525. DOI: 10.1007/s11090-006-9033-3.
[36] 颜欣. 磁旋滑动弧等离子体裂解生活垃圾气化焦油的实验研究[D]. 杭州: 浙江大学, 2018.
[37] MUTAF-YARDIMCI O, SAVELIEV A V, FRIDMAN A A, et al.Thermal and nonthermal regimes of gliding arc discharge in air flow[J]. Journal of applied physics, 2000, 87(4): 1632-1641. DOI: 10.1063/1.372071.
[38] HUANG H, TANG L.Treatment of organic waste using thermal plasma pyrolysis technology[J]. Energy conversion & management, 2007, 48(4): 1331-1337. DOI: 10.1016/j.enconman.2006.08.013.
[39] SANLISOY A, CARPINLIOGLU M O.A review on plasma gasification for solid waste disposal[J]. International journal of hydrogen energy, 2017, 42(2): 1361-1365. DOI: 10.1016/j.ijhydene.2016.06.008.
[40] XIE Q L, BORGES F C, CHENG Y L, et al.Fast microwave-assisted catalytic gasification of biomass for syngas production and tar removal[J]. Bioresource technology, 2014, 156: 291-296. DOI: 10.1016/j.biortech.2014.01.057.
[41] WNUKOWSKI M, JAMRÓZ P. Microwave plasma treatment of simulated biomass syngas: Interactions between the permanent syngas compounds and their influence on the model tar compound conversion[J]. Fuel processing technology, 2018, 173: 229-242. DOI: 10.1016/j.fuproc.2018.01.025.
[42] CHEN J H, DAVIDSON J H.Model of the negative DC corona plasma: comparison to the positive DC corona plasma[J]. Plasma chemistry and plasma processing, 2003, 23(1): 83-102. DOI: 10.1023/A:1022468803203.
[43] NAIR S A, YAN K, PEMEN A J M, et al. A high-temperature pulsed corona plasma system for fuel gas cleaning[J]. Journal of electrostatics, 2004, 61(2): 117-127. DOI: 10.1016/j.elstat.2004.02.002.
[44] BOEUF J P, BERNECKER B, CALLEGARI T, et al.Generation, annihilation, dynamics and self-organized patterns of filaments in dielectric barrier discharge plasmas[J]. Applied physics letters, 2012, 100(24): 244108. DOI: 10.1063/1.4729767.
[45] SALEEM F, ZHANG K, HARVEY A.Plasma-assisted decomposition of a biomass gasification tar analogue into lower hydrocarbons in a synthetic product gas using a dielectric barrier discharge reactor[J]. Fuel, 2019, 235: 1412-1419. DOI: 10.1016/j.fuel.2018.08.010.
[46] WOOLCOCK P J, BROWN R C.A review of cleaning technologies for biomass-derived syngas[J]. Biomass and bioenergy, 2013, 52: 54-84. DOI: 10.1016/j.biombioe. 2013.02.036.
[47] HU M, LAGHARI M, CUI B H, et al.Catalytic cracking of biomass tar over char supported nickel catalyst[J]. Energy, 2018, 145: 228-237. DOI: 10.1016/j.energy. 2017.12.096.
[48] 胡万勇, 王训, 杨娉, 等. Ni/钙铝石催化剂对焦油模拟物甲苯的催化研究[J]. 环境工程, 2017, 35(7): 116-120, 125. DOI: 10.13205/j.hjgc.201707023.
[49] LU P, HUANG Q X, CHI Y, et al.Catalytic cracking of tar derived from the pyrolysis of municipal solid waste fractions over biochar[J]. Proceedings of the combustion institute, 2018, 37(3): 2673-2680. DOI: 10.1016/j.proci. 2018.06.051.
[50] GUO F Q, LI X L, LIU Y, et al.Catalytic cracking of biomass pyrolysis tar over char-supported catalysts[J]. Energy conversion and management, 2018, 167: 81-90. DOI: 10.1016/j.enconman.2018.04.094.
[51] QUITETE C P B, SOUZA M M V M. Application of Brazilian dolomites and mixed oxides as catalysts in tar removal system[J]. Applied catalysis A: general, 2017, 536: 1-8. DOI: 10.1016/j.apcata.2017.02.014.
[52] MENG J G, WANG X B, ZHAO Z L, et al.Highly abrasion resistant thermally fused olivine as in-situ catalysts for tar reduction in a circulating fluidized bed biomass gasifier[J]. Bioresource technology, 2018, 268: 212-220. DOI: 10.1016/j.biortech.2018.07.135.
[53] VIRGINIE M, ADÁNEZ J, COURSON C, et al. Effect of Fe-olivine on the tar content during biomass gasification in a dual fluidized bed[J]. Applied catalysis B: environmental, 2012, 121-122: 214-222. DOI: 10.1016/j.apcatb.2012.04.005.
[54] MCFARLAN A, MAFFEI N.Assessing tar removal in biomass gasification by steam reforming over a commercial automotive catalyst[J]. Fuel, 2018, 233: 291-298. DOI: 10.1016/j.fuel.2018.06.020.
[55] 王伟, 王兴富. 浅述中低温煤焦油加氢工艺[J]. 化工管理, 2017(32): 51. DOI: 10.3969/j.issn.1008-4800. 2017.32.049.
[56] 何选明, 陈芸, 戴丹, 等. 生物质焦油改性提质制取燃料油的研究进展[J]. 能源化工, 2006, 37(3): 24-27. DOI: 10.3969/j.issn.1006-7906.2016.03.005.
[57] 崔文岗, 李冬, 樊安, 等. 低温煤焦油加氢制备清洁燃料油品中试试验研究[J]. 化工进展, 2018, 37(6): 2192-2202. DOI: 10.16085/j.issn.1000-6613.2017-1433.
[58] 汤子强, 赵金安, 王志忠. 低温煤焦油与废旧塑料共熔油化的研究[J]. 燃料化学学报, 1999, 27(5): 403-407.
[59] CHEN D Z, YIN L J, WANG H, et al.Pyrolysis technologies for municipal solid waste: A review[J]. Waste management, 2014, 34(12): 2466-2486. DOI: 10.1016/j. wasman.2014.08.004.
[60] KAN T, WANG H, LI C, et al.Liquid fuels from ethylene tar by two-stage catalytic hydroprocessing[J]. Energy sources, part A: recovery, utilization, and environmental effects, 2015, 37(21): 2317-2322. DOI: 10.1080/15567036.2011.613892.
[61] BOULLOSA-EIRAS S, LØDENG R, BERGEM H, et al. Catalytic hydrodeoxygenation (HDO) of phenol over supported molybdenum carbide, nitride, phosphide and oxide catalysts[J]. Catalysis today, 2014, 223: 44-53. DOI: 10.1016/j.cattod.2013.09.044.
[62] WANG Y P, DAI L L, FAN L L, et al.Catalytic co-pyrolysis of waste vegetable oil and high density polyethylene for hydrocarbon fuel production[J]. Waste management, 2017, 61: 276-282. DOI: 10.1016/j.wasman. 2017.01.010.
[63] FENG Z, ZHAO J M, ROCKWELL J, et al.Direct liquefaction of waste plastics and coliquefaction of coal- plastic mixtures[J]. Fuel processing technology, 1996, 49(1/3): 17-30. DOI: 10.1016/S0378-3820(96)01036-3.
文章导航

/