[1] 冯琳清, 张延迟, 赵晨, 等. 能源互联网研究综述[J]. 电源世界, 2017(5): 26-29.
[2] 吴利兰, 荆朝霞, 吴青华, 等. 基于Stackelberg博弈模型的综合能源系统均衡交互策略[J]. 电力系统自动化, 2018, 42(4): 142-150, 207. DOI: 10.7500/AEPS20170914011.
[3] 余晓丹, 徐宪东, 陈硕翼, 等. 综合能源系统与能源互联网简述[J]. 电工技术学报, 2016, 31(1): 1-13. DOI: 10.3969/j.issn.1000-6753.2016.01.001.
[4] 周孝信. 构建新一代能源系统[J]. 电气时代, 2017(1): 45-47.
[5] 王伟亮, 王丹, 贾宏杰, 等. 能源互联网背景下的典型区域综合能源系统稳态分析研究综述[J]. 中国电机工程学报, 2016, 36(12): 3292-3305. DOI: 10.13334/j.0258- 8013.pcsee.152858.
[6] 李立浧, 张勇军, 徐敏. 我国能源系统形态演变及分布式能源发展[J]. 分布式能源, 2017, 2(1): 1-9. DOI: 10.16513/j.cnki.10-1427/tk.2017.01.001.
[7] 卢胤龙, 韩明新, 任洪波, 等. 多能互补分布式能源系统优化设计研究进展[J]. 上海电力学院学报, 2018, 34(3): 229-235. DOI: 10.3969/j.issn.1006-4729.2018.03.005.
[8] 钟迪, 李启明, 周贤, 等. 多能互补能源综合利用关键技术研究现状及发展趋势[J]. 热力发电, 2018, 47(2): 1-5, 55. DOI: 10.19666/j.rlfd.201706049.
[9] 彭克, 张聪, 徐丙垠, 等. 多能协同综合能源系统示范工程现状与展望[J]. 电力自动化设备, 2017, 37(6): 3-10. DOI: 10.16081/j.issn.1006-6047.2017.06.001.
[10] 陈娟. 能源互联网背景下的区域分布式能源系统规划研究[D]. 北京: 华北电力大学(北京), 2017.
[11] 郭井宽, 孙华. 分布式能源系统的发展动态[J]. 装备机械, 2016(1): 70-74.
[12] CHO H, SMITH A D, MAGO P.Combined cooling, heating and power: a review of performance improvement and optimization[J]. Applied energy, 2014, 136: 168-185. DOI: 10.1016/j.apenergy.2014.08.107.
[13] 李博彤. 分布式能源集成供能系统研究[D]. 北京: 华北电力大学(北京), 2017.
[14] 邱留良. 基于TRNSYS的分布式能源系统运行模拟及优化分析[D]. 上海: 上海电力学院, 2017.
[15] 宋英华, 张敏吉, 肖钢. 分布式能源综论[M]. 武汉: 武汉理工大学出版社, 2011.
[16] 任洪波, 邱留良, 吴琼, 等. 分布式能源系统优化与设计综述[J]. 中国电力, 2017, 50(7): 49-55. DOI: 10.11930/j.issn.1004-9649.2017.07.049.07.
[17] WEBER C, SHAH N.Optimisation based design of a district energy system for an eco-town in the united kingdom[J]. Energy, 2011, 36(2): 1292-1308. DOI: 10.1016/j.energy.2010.11.014.
[18] OMU A, CHOUDHARY R, BOIES A.Distributed energy resource system optimisation using mixed integer linear programming[J]. Energy policy, 2013, 61: 249-266. DOI: 10.1016/j.enpol.2013.05.009.
[19] 任洪波, 杨健, 班银银, 等. 分布式能源互联网的探索与展望[J]. 中国能源, 2015, 37(3): 38-41, 17. DOI: 10.3969/j.issn.1003-2355.2015.03.008.
[20] 蔡博, 康书硕, 李洪强, 等. 基于天然气基分布式能源系统智能建筑能源物联网研究[J]. 工程热物理学报, 2012, 33(12): 2047-2051.
[21] DESHMUKH M K, DESHMUKH S S.Modeling of hybrid renewable energy systems[J]. Renewable and sustainable energy reviews, 2008, 12(1): 235-249. DOI: 10.1016/j.rser.2006.07.011.
[22] WANG L, YEH T H, LEE W J, et al.Benefit evaluation of wind turbine generators in wind farms using capacity-factor analysis and economic-cost methods[J]. IEEE transactions on power systems, 2009, 24(2): 692-704. DOI: 10.1109/TPWRS.2009.2016519.
[23] ZHOU W, LOU C Z, LI Z S, et al.Current status of research on optimum sizing of stand-alone hybrid solar- wind power generation systems[J]. Applied energy, 2010, 87(2): 380-389. DOI: 10.1016/j.apenergy.2009.08.012.
[24] YANG H X, ZHOU W, LU L, et al.Optimal sizing method for stand-alone hybrid solar-wind system with LPSP technology by using genetic algorithm[J]. Solar energy, 2008, 82(4): 354-367. DOI: 10.1016/j.solener. 2007.08.005.
[25] YANG H X, LU L, ZHOU W.A novel optimization sizing model for hybrid solar-wind power generation system[J]. Solar energy, 2007, 81(1): 76-84. DOI: 10.1016/j.solener.2006.06.010.
[26] SHIRVANI M, MEMARIPOUR A, ABDOLLAHI M, et al.Calculation of generation system reliability index: expected energy not served[J]. Life science journal, 2012, 9(4): 344.
[27] NUGRAHA P Y, WIDYOTRIATMO A, LEKSONO E.Optimization of a grid-tied microgrid configuration using dual storage systems[C]//Proceedings of the 15th International Conference on Control, Automation and Systems. Busan, South Korea: IEEE, 2015. DOI: 10.1109/ICCAS.2015.7364896.
[28] PELET X, FAVRAT D, LEYLAND G.Multiobjective optimisation of integrated energy systems for remote communities considering economics and CO2 emissions[J]. International journal of thermal sciences, 2005, 44(12): 1180-1189. DOI: 10.1016/j.ijthermalsci.2005.09.006.
[29] BOROWY B S, SALAMEH Z M.Methodology for optimally sizing the combination of a battery bank and PV array in a wind/PV hybrid system[J]. IEEE transactions on energy conversion, 1996, 11(2): 367-375. DOI: 10.1109/60.507648.
[30] 荆有印, 白鹤, 张建良. 太阳能冷热电联供系统的多目标优化设计与运行策略分析[J]. 中国电机工程学报, 2012, 32(20): 82-87.
[31] JAYASEKARA S, HALGAMUGE S K, ATTALAGE R A, et al.Optimum sizing and tracking of combined cooling heating and power systems for bulk energy consumers[J]. Applied energy, 2014, 118: 124-134. DOI: 10.1016/j.apenergy.2013.12.040.
[32] 王栋. 分布式能源系统现状分析与探讨[J]. 上海节能, 2016(12): 653-656. DOI: 10.13770/j.cnki.issn2095-705x. 2016.12.003.
[33] 魏大钧. 小型冷热电联供系统多目标优化设计与能量管理策略研究[D]. 济南: 山东大学, 2016.
[34] 侯建朝, 胡群丰, 谭忠富. 计及需求响应的风电-电动汽车协同调度多目标优化模型[J]. 电力自动化设备, 2016, 36(7): 22-27. DOI: 10.16081/j.issn.1006-6047.2016. 07.004.
[35] JALALZADEH-AZAR A A. A comparison of electrical- and thermal-load-following CHP systems[J]. ASHRAE transactions, 2004, 110(2): 85-94.
[36] WANG J J, ZHANG C F, JING Y Y.Multi-criteria analysis of combined cooling, heating and power systems in different climate zones in China[J]. Applied energy, 2010, 87(4): 1247-1259. DOI: 10.1016/j.apenergy.2009. 06.027.
[37] FANG F, WANG Q H, SHI Y.A novel optimal operational strategy for the CCHP system based on two operating modes[J]. IEEE transactions on power systems, 2012, 27(2): 1032-1041. DOI: 10.1109/TPWRS.2011.2175490.
[38] KAVVADIAS K C, MAROULIS Z B.Multi-objective optimization of a trigeneration plant[J]. Energy policy, 2010, 38(2): 945-954. DOI: 10.1016/j.enpol.2009.10.046.
[39] 周晓倩, 余志文, 艾芊, 等. 含冷热电联供的微网优化调度策略综述[J]. 电力自动化设备, 2017, 37(6): 26-33. DOI: 10.16081/j.issn.1006-6047.2017.06.004.
[40] 骆钊. 冷热电联供型微网能量优化管理研究[D]. 南京: 东南大学, 2017.
[41] 许东. 微型燃气轮机冷电联供系统能量优化与管理[D]. 天津: 天津大学, 2010.
[42] JU L W, TAN Z F, LI H H, et al.Multi-objective operation optimization and evaluation model for CCHP and renewable energy based hybrid energy system driven by distributed energy resources in China[J]. Energy, 2016, 111: 322-340. DOI: 10.1016/j.energy.2016.05.085.
[43] 孙作潇. 冷热电联供型微电网多目标动态优化调度[D]. 杭州: 杭州电子科技大学, 2017.
[44] LIU X.Optimization of a combined heat and power system with wind turbines[J]. International journal of electrical power & energy systems, 2012, 43(1): 1421-1426. DOI: 10.1016/j.ijepes.2012.07.022.
[45] HU M Q, CHO H.A probability constrained multi- objective optimization model for CCHP system operation decision support[J]. Applied energy, 2014, 116: 230-242. DOI: 10.1016/j.apenergy.2013.11.065.
[46] LIU M X, SHI Y, FANG F.A new operation strategy for CCHP systems with hybrid chillers[J]. Applied energy, 2012, 95: 164-173. DOI: 10.1016/j.apenergy.2012.02.035.
[47] WU J Y, WANG J L, LI S.Multi-objective optimal operation strategy study of micro-CCHP system[J]. Energy, 2012, 48(1): 472-483. DOI: 10.1016/j.energy.2012.10.013.
[48] FACCI A L, ANDREASSI L, UBERTINI S.Optimization of CHCP (combined heat power and cooling) systems operation strategy using dynamic programming[J]. Energy, 2014, 66: 387-400. DOI: 10.1016/j.energy.2013.12.069.
[49] BYUN J, HONG I, KANG B, et al.A smart energy distribution and management system for renewable energy distribution and context-aware services based on user patterns and load forecasting[J]. IEEE transactions on consumer electronics, 2011, 57(2): 436-444. DOI: 10.1109/TCE.2011.5955177.
[50] OLIVARES D E, MEHRIZI-SANI A, ETEMADI A H, et al.Trends in microgrid control[J]. IEEE transactions on smart grid, 2014, 5(4): 1905-1919. DOI: 10.1109/TSG. 2013.2295514.
[51] KANG L G, YANG J H, AN Q S, et al.Effects of load following operational strategy on CCHP system with an auxiliary ground source heat pump considering carbon tax and electricity feed in tariff[J]. Applied energy, 2016, 194(5): 454-466. DOI: 10.1016/j.apenergy.2016.07.017.
[52] BISCHI A, TACCARI L, MARTELLI E, et al.A detailed MILP optimization model for combined cooling, heat and power system operation planning[J]. Energy, 2014, 74: 12-26. DOI: 10.1016/j.energy.2014.02.042.
[53] 魏大钧, 张承慧, 孙波. 计及变负荷特性的小型冷热电联供系统经济优化运行研究[J]. 电网技术, 2015, 39(11): 3240-3246. DOI: 10.13335/j.1000-3673.pst.2015.11.034.
[54] 李正茂, 张峰, 梁军, 等. 计及附加机会收益的冷热电联供型微电网动态调度[J]. 电力系统自动化, 2015, 39(14): 8-15. DOI: 10.7500/AEPS20141109002.
[55] MORADI M H, HAJINAZARI M, JAMASB S, et al.An energy management system (EMS) strategy for combined heat and power (CHP) systems based on a hybrid optimization method employing fuzzy programming[J]. Energy, 2013, 49: 86-101. DOI: 10.1016/j.energy.2012.10.005.