欢迎访问《新能源进展》官方网站!今天是

太阳能光伏-PEM水电解制氢直接耦合系统优化

  • 郭常青 ,
  • 伊立其 ,
  • 闫常峰 ,
  • 史言 ,
  • 王志达
展开
  • 1. 中国科学院广州能源研究所,广州 510640;
    2. 中国科学院可再生能源重点实验室,广州 510640;
    3. 广东省新能源和可再生能源研究开发与应用重点实验室,广州 510640;
    4. 中国科学院大学,北京 100049
郭常青(1978-),男,博士,副研究员,主要从事制氢、传热传质研究。伊立其(1990-),男,硕士研究生,主要从事太阳能光伏-电解水氢储能研究。闫常峰(1969-),男,博士,研究员,主要从事制氢、纳米催化研究。

收稿日期: 2018-08-29

  修回日期: 2018-10-23

  网络出版日期: 2019-06-29

基金资助

广东省自然科学基金项目(2015A030312007,2015A030313716); 国家自然科学基金项目(51576201); 广东省科技计划项目(2014A020216030)

Optimization of Photovoltaic-PEM Electrolyzer Direct Coupling Systems

  • GUO Chang-qing ,
  • YI Li-qi ,
  • YAN Chang-feng ,
  • SHI Yan ,
  • WANG Zhi-da
Expand
  • 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China;
    3. Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China;
    4. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2018-08-29

  Revised date: 2018-10-23

  Online published: 2019-06-29

摘要

利用水电解制氢进行氢储能是我国可再生能源弃电问题的解决方案之一。本文建立了太阳能光伏阵列与质子交换膜(proton exchange membrane, PEM)水电解直接耦合系统的分析模型,研究耦合系统优化运行工况。结果表明,天气变化易导致直接耦合系统工作点偏离光伏最大功率点,引起耦合失配并降低太阳能利用率。通过匹配太阳能光伏阵列串并联结构和水电解器工作槽数进行“粗调”,改变PEM水电解器工作温度进行“精调”,可使直接耦合系统工作在最大功率点附近,使系统能量损失最小。本研究为太阳能光伏-PEM水电解氢储能直接耦合技术的运行策略和优化奠定了理论基础。

本文引用格式

郭常青 , 伊立其 , 闫常峰 , 史言 , 王志达 . 太阳能光伏-PEM水电解制氢直接耦合系统优化[J]. 新能源进展, 2019 , 7(3) : 287 -294 . DOI: 10.3969/j.issn.2095-560X.2019.03.012

Abstract

Hydrogen energy storage technology is considered as an effective and promising solution to abandoning power due to intermittency and uncontrollability of renewable energy resources. In this paper, a theoretical model of direct coupling system of photovoltaic and proton exchange membrane (PEM) water electrolyzer (WE) was established to optimize the operating conditions. Results showed that the changeable weather can cause the deviation between system operating points and the PV maximum power points which decreased the solar energy utilization efficiency. Based on the model, two optimization methods were proposed, “roughly adjust” can be done by matching the combination of PV modules and number of water electrolyzer cells, and then “precise adjust” by changing the operating temperature of water electrolyzer to obtain minimum energy loss. This work can be used as operation strategy for PV-PEM water electrolyzer direct coupling systems.

参考文献

[1] 国家能源局. 2017年度全国可再生能源电力发展监测评价报告[R]. 北京: 国家能源局, 2018.
[2] HAMEER S, VAN NIEKERK J L. A review of large-scale electrical energy storage[J]. International journal of energy research, 2015, 39(9): 1179-1195. DOI: 10.1002/er.3294.
[3] GARCÍA-VALVERDE R, ESPINOSA N, URBINA A. Optimized method for photovoltaic-water electrolyser direct coupling[J]. International journal of hydrogen energy, 2011, 36(17): 10574-10586. DOI: 10.1016/j.ijhydene.2011.05.179.
[4] TURNER J, SVERDRUP G, MANN M K, et al.Renewable hydrogen production[J]. International journal of energy research, 2008, 32(5): 379-407. DOI: 10.1002/er.1372.
[5] WALKER S B, MUKHERJEE U, FOWLER M, et al.Benchmarking and selection of power-to-gas utilizing electrolytic hydrogen as an energy storage alternative[J]. International journal of hydrogen energy, 2016, 41(19): 7717-7731. DOI: 10.1016/j.ijhydene.2015.09.008.
[6] AKYUZ E, COSKUN C, OKTAY Z, et al.Hydrogen production probability distributions for a PV-electrolyser system[J]. International journal of hydrogen energy, 2011, 36(17): 11292-11299. DOI: 10.1016/j.ijhydene.2010.11.125.
[7] CLARKE R E, GIDDEY S, BADWAL S P S. Stand-alone PEM water electrolysis system for fail safe operation with a renewable energy source[J]. International journal of hydrogen energy, 2010, 35(3): 928-935. DOI: 10.1016/j.ijhydene.2009.11.100.
[8] LIU Z X, QIU Z M, LUO Y, et al.Operation of first solar-hydrogen system in China[J]. International journal of hydrogen energy, 2010, 35(7): 2762-2766. DOI: 10.1016/j.ijhydene.2009.05.027.
[9] ZHOU K L, FERREIRA J A, DE HAAN S W H. Optimal energy management strategy and system sizing method for stand-alone photovoltaic-hydrogen systems[J]. International journal of hydrogen energy, 2008, 33(2): 477-489. DOI: 10.1016/j.ijhydene.2007.09.027.
[10] ARRIAGA L G, MARTÍNEZ W, CANO U, et al. Direct coupling of a solar-hydrogen system in Mexico[J]. International journal of hydrogen energy, 2007, 32(13): 2247-2252. DOI: 10.1016/j.ijhydene.2006.10.067.
[11] PAUL B, ANDREWS J.Optimal coupling of PV arrays to PEM electrolysers in solar-hydrogen systems for remote area power supply[J]. International journal of hydrogen energy, 2008, 33(2): 490-498. DOI: 10.1016/j. ijhydene.2007.10.040.
[12] MAROUFMASHAT A, SAYEDIN F, KHAVAS S S.An imperialist competitive algorithm approach for multi- objective optimization of direct coupling photovoltaic- electrolyzer systems[J]. International journal of hydrogen energy, 2014, 39(33): 18743-18757. DOI: 10.1016/j. ijhydene.2014.08.125.
[13] SAYEDIN F, MAROUFMASHAT A, SATTARI S, et al.Optimization of Photovoltaic Electrolyzer Hybrid systems; taking into account the effect of climate conditions[J]. Energy conversion and management, 2016, 118: 438-449. DOI: 10.1016/j.enconman.2016.04.021.
[14] MAEDA T, ITO H, HASEGAWA Y, et al.Study on control method of the stand-alone direct-coupling photovoltaic-water electrolyzer[J]. International journal of hydrogen energy, 2012, 37(6): 4819-4828. DOI: 10.1016/j.ijhydene.2011.12.013.
[15] BILGEN E.Solar hydrogen from photovoltaic-electrolyzer systems[J]. Energy conversion and management, 2001, 42(9): 1047-1057. DOI: 10.1016/S0196-8904(00)00131-X.
[16] HASAN M A, PARIDA S K.An overview of solar photovoltaic panel modeling based on analytical and experimental viewpoint[J]. Renewable and sustainable energy reviews, 2016, 60: 75-83. DOI: 10.1016/j.rser. 2016.01.087.
[17] 彭乐乐, 孙以泽, 林学龙, 等. 工程用太阳电池模型及参数确定法[J]. 太阳能学报, 2012, 33(2): 283-286.
[18] 廖志凌, 阮新波. 任意光强和温度下的硅太阳电池非线性工程简化数学模型[J]. 太阳能学报, 2009, 30(4): 430-435.
[19] SAYEDIN F, MAROUFMASHAT A, ROSHANDEL R, et al.Optimal design and operation of a photovoltaic- electrolyser system using particle swarm optimisation[J]. International journal of sustainable energy, 2016, 35(6): 566-582. DOI: 10.1080/14786451.2014.922974.
[20] CHOI P, BESSARABOV D G, DATTA R.A simple model for solid polymer electrolyte (SPE) water electrolysis[J]. Solid state ionics, 2004, 175(1/4): 535-539. DOI: 10.1016/j.ssi.2004.01.076.
[21] 霍立琴, 杨春信, 史乔升, 等. PEM电解水芯体电化学特性分析[J]. 航天医学与医学工程, 2015, 28(1): 39-43.
[22] BIAKU C Y, DALE N V, MANN M D, et al.A semiempirical study of the temperature dependence of the anode charge transfer coefficient of a 6 kW PEM electrolyzer[J]. International journal of hydrogen energy, 2008, 33(16): 4247-4254. DOI: 10.1016/j.ijhydene.2008. 06.006.
[23] NI M, LEUNG M K H, LEUNG D Y C. Energy and exergy analysis of hydrogen production by a proton exchange membrane (PEM) electrolyzer plant[J]. Energy conversion and management, 2008, 49(10): 2748-2756. DOI: 10.1016/j.enconman.2008.03.018.
文章导航

/