欢迎访问《新能源进展》官方网站!今天是

锂离子电池模组热失控传播的结构因素影响分析

  • 王骞 ,
  • 李顶根 ,
  • 李卫 ,
  • 徐鹏
展开
  • 1. 华中科技大学 中欧清洁与可再生能源学院,武汉 430074;
    2. 华中科技大学 能源与动力工程学院,武汉 430074;
    3. 海军驻大连426厂军事代表室,大连 116000
王骞(1990-),男,硕士研究生,主要从事新能源汽车测控技术和电池可靠性计算研究。李顶根(1977-),男,副教授,主要从事动力电池和动力机械电子测控技术研究。

收稿日期: 2019-03-01

  修回日期: 2019-06-09

  网络出版日期: 2019-08-29

基金资助

国家重点研发计划项目(2018YFB0104100)

Analysis of Structural Factors Affecting Thermal Runaway Propagation of Li-Ion Battery Modules

  • WANG Qian ,
  • LI Ding-gen ,
  • LI Wei ,
  • XU Peng
Expand
  • 1. Huazhong University of Science and Technology, China-EU Institute for Clean and Renewable Energy, Wuhan 430074, China;
    2. Huazhong University of Science and Technology, School of Energy and Power Engineering, Wuhan 430074, China;
    3. Military representative room of the PLA navy plant 426 in Dalian, Dalian 116000, China

Received date: 2019-03-01

  Revised date: 2019-06-09

  Online published: 2019-08-29

摘要

为优化锂离子电池模组的结构设计,通过热失控数值分析,结合COMSOL MULTIPHYSICS软件搭建了圆柱电池模组的三维热失控传播模型,研究不同排列结构和电池间隙下的热失控传播特性。结果表明:插排结构能有效降低热失控传播速率;增加模组中电池间隙,电池的热失控触发时间后移;在模组热失控后期,扩散速率加快。

本文引用格式

王骞 , 李顶根 , 李卫 , 徐鹏 . 锂离子电池模组热失控传播的结构因素影响分析[J]. 新能源进展, 2019 , 7(4) : 295 -301 . DOI: 10.3969/j.issn.2095-560X.2019.04.001

Abstract

In order to optimize the structure design of lithium-ion battery modules, a three-dimensional thermal runaway propagation model of cylindrical battery modules was constructed by thermal runaway numerical analysis combined with COMSOL MULTIPHYSICS software, and the thermal runaway propagation characteristics of the different arrangement structures and the gap of the battery were studied. The results showed as follows: the insert structure can effectively reduce the thermal runaway propagation rate; increasing the battery gap in the module makes the thermal runaway trigger time move backward; in the late thermal runaway of the module, the diffusion rate was accelerated.

参考文献

[1] GUO G F, LONG B, CHENG B, et al.Three- dimensional thermal finite element modeling of lithium-ion battery in thermal abuse application[J]. Journal of power sources, 2010, 195(8): 2393-2398.
[2] 张明轩, 冯旭宁, 欧阳明高, 等. 三元锂离子动力电池针刺热失控实验与建模[J]. 汽车工程, 2015, 37(7): 743-750, 756. DOI: 10.3969/j.issn.1000-680X.2015.07.002.
[3] LOPEZ C F.Modeling and experimental study of lithium-ion battery thermal behavior[D]. Texas: Texas A & M University, 2015: 195-207.
[4] FENG X N, HE X M, OUYANG M G, et al.Thermal runaway propagation model for designing a safer battery pack with 25 Ah LiNixCoyMnzO2 large format lithium ion battery[J]. Applied energy, 2015, 154: 74-91. DOI: 10.1016/j.apenergy.2015.04.118.
[5] KIZILEL R, LATEEF A, SABBAH R, et al.Passive control of temperature excursion and uniformity in high-energy Li-ion battery packs at high current and ambient temperature[J]. Journal of power sources, 2008, 183(1): 370-375. DOI: 10.1016/j.jpowsour.2008.04.050.
[6] 尚怀芳. 锂离子电池正极材料LiFePO4和LiMn2O4的表面结构及电化学性性能研究[D]. 北京: 北京工业大学, 2013.
[7] CHIU K C, LIN C H, YEH S F, et al.An electrochemical modeling of lithium-ion battery nail penetration[J]. Journal of power sources, 2014, 251: 254-263. DOI: 10.1016/j.jpowsour.2013.11.069.
[8] HATCHARD T D, MACNEIL D D, BASU A, et al.Thermal model of cylindrical and prismatic lithium-ion cells[J]. Journal of the electrochemical society, 2001, 148(7): A755-A761. DOI: 10.1149/1.1377592.
[9] SPOTNITZ R, FRANKLIN J.Abuse behavior of high-power, lithium-ion cells[J]. Journal of power sources, 2003, 113(1): 81-100. DOI: 10.1016/S0378-7753(02)00488-3.
[10] 杜双龙, 赖延清, 贾明, 等. 圆柱锂离子动力电池电热特性仿真[J]. 中国有色金属学报, 2014, 24(7): 1823-1830. DOI: 10.19476/j.ysxb.1004.0609.2014.07.020.
文章导航

/