[1] TANG J L, WANG X C, HU Y S, et al.Nutrients removal performance and sludge properties using anaerobic fermentation slurry from food waste as an external carbon source for wastewater treatment[J]. Bioresource technology, 2019, 271: 125-135. DOI: 10.1016/j.biortech.2018.09.087.
[2] TANG J L, WANG X C, HU Y S, et al.Nitrogen removal enhancement using lactic acid fermentation products from food waste as external carbon sources: performance and microbial communities[J]. Bioresource technology, 2018, 256: 259-268. DOI: 10.1016/j.biortech.2018.02.033.
[3] FENG L J, CHEN K, HAN D D, et al.Comparison of nitrogen removal and microbial properties in solid-phase denitrification systems for water purification with various pretreated lignocellulosic carriers[J]. Bioresource technology, 2017, 224: 236-245. DOI: 10.1016/j.biortech.2016.11.002.
[4] RAUDKIVI M, ZEKKER I, RIKMANN E, et al.Nitrite inhibition and limitation - the effect of nitrite spiking on anammox biofilm, suspended and granular biomass[J]. Water science & technology, 2017, 75(2): 313-321. DOI: 10.2166/wst.2016.456.
[5] GALLOWAY J N, DENTENER F J, CAPONE D G, et al.Nitrogen cycles: past, present, and future[J]. Biogeochemistry, 2004, 70(2): 153-226. DOI: 10.1007/s10533-004-0370-0.
[6] MCCARTY P L.What is the best biological process for nitrogen removal: when and why?[J]. Environmental science & technology, 2018, 52(7): 3835-3841. DOI: 10.1021/acs.est.7b05832.
[7] DVOŘÁK P, NIKEL P I, DAMBORSKÝ J, et al. Bioremediation 3.0: engineering pollutant-removing bacteria in the times of systemic biology[J]. Biotechnology advances, 2017, 35(7): 845-866. DOI: 10.1016/j.biotechadv.2017.08.001.
[8] BARDAROV I, MITOV M, IVANOVA D, et al.Light- dependent processes on the cathode enhance the electrical outputs of sediment microbial fuel cells[J]. Bioelectrochemistry, 2018, 122: 1-10. DOI: 10.1016/j.bioelechem.2018.02.009.
[9] BOSE D, DHAWAN H, KANDPAL V, et al.Bioelectricity generation from sewage and wastewater treatment using two-chambered microbial fuel cell[J]. International journal of energy research, 2018, 42(14): 4335-4344. DOI: 10.1002/er.4172.
[10] RINALDI W, ABUBAKAR, RAHMI R F, et al. Tofu wastewater treatment by sediment microbial fuel cells[J]. IOP conference series: materials science and engineering, 2018, 334(1): 012068. DOI: 10.1088/1757-899X/334/1/012068.
[11] QUAN X C, XU H D, SUN B, et al.Anode modification with palladium nanoparticles enhanced Evans Blue removal and power generation in microbial fuel cells[J]. International biodeterioration & biodegradation, 2018, 132: 94-101. DOI: 10.1016/j.ibiod.2018.01.001.
[12] LOGAN B E.Peer reviewed: extracting hydrogen and electricity from renewable resources[J]. Environmental science & technology, 2004, 38(9): 160A-167A. DOI: 10.1021/es040468s.
[13] KONDAVEETI S, MOHANAKRISHNA G, LEE J K, et al.Methane as a substrate for energy generation using microbial fuel cells[J]. Indian journal of microbiology, 2019, 59(1): 121-124. DOI: 10.1007/s12088-018-0765-6.
[14] LOVLEY D R.Bug juice: harvesting electricity with microorganisms[J]. Nature reviews microbiology, 2006, 4(7): 497-508. DOI: 10.1038/nrmicro1442.
[15] KOÓK L, DESMOND-LE QUÉMÉNER E, BAKONYI P, et al. Behavior of two-chamber microbial electrochemical systems started-up with different ion-exchange membrane separators[J]. Bioresource technology, 2019, 278: 279-286. DOI: 10.1016/j.biortech.2019.01.097.
[16] TOUCH N, HIBINO T, YAMAJI S, et al.Nutrient salt removal by steel-making slag in sediment microbial fuel cells[J]. Environmental technology, 2019, 40(20): 2906-2912. DOI: 10.1080/09593330.2018.1457724.
[17] HU J J, ZHANG Q G, LEE D J, et al.Feasible use of microbial fuel cells for pollution treatment[J]. Renewable energy, 2018, 129: 824-829. DOI: 10.1016/j.renene.2017. 02.001.
[18] SLATE A J, WHITEHEAD K A, BROWNSON D A C, et al. Microbial fuel cells: an overview of current technology[J]. Renewable and sustainable energy reviews, 2019, 101: 60-81. DOI: 10.1016/j.rser.2018.09.044.
[19] JIANG C, YANG Q, WANG D B, et al.Simultaneous perchlorate and nitrate removal coupled with electricity generation in autotrophic denitrifying biocathode microbial fuel cell[J]. Chemical engineering journal, 2017, 308: 783-790. DOI: 10.1016/j.cej.2016.09.121.
[20] GHANGREKAR M M, CHATTERJEE P.A systematic review on bioelectrochemical systems research[J]. Current pollution reports, 2017, 3(4): 281-288. DOI: 10.1007/s40726-017-0071-7.
[21] ZHOU M H, WANG H Y, HASSETT D J, et al.Recent advances in microbial fuel cells (MFCs) and microbial electrolysis cells (MECs) for wastewater treatment, bioenergy and bioproducts[J]. Journal of chemical technology and biotechnology, 2013, 88(4): 508-518. DOI: 10.1002/jctb.4004.
[22] ZHAO T, XIE B Z, YI Y, et al.Sequential flowing membrane-less microbial fuel cell using bioanode and biocathode as sensing elements for toxicity monitoring[J]. Bioresource technology, 2019, 276: 276-280. DOI: 10.1016/j.biortech.2019.01.009.
[23] SONG X, YANG W L, LIN Z Q, et al.A loop of catholyte effluent feeding to bioanodes for complete recovery of Sn, Fe, and Cu with simultaneous treatment of the co-present organics in microbial fuel cells[J]. Science of the total environment, 2019, 651: 1698-1708. DOI: 10.1016/j.scitotenv.2018.10.089.
[24] YE Y Y, NGO H H, GUO W S, et al.Feasibility study on a double chamber microbial fuel cell for nutrient recovery from municipal wastewater[J]. Chemical engineering journal, 2019, 358: 236-242. DOI: 10.1016/j.cej.2018.09.215.
[25] MATHURIYA A S, JADHAV D A, GHANGREKAR M M.Architectural adaptations of microbial fuel cells[J]. Applied microbiology and biotechnology, 2018, 102(22): 9419-9432. DOI: 10.1007/s00253-018-9339-0.
[26] 靳宏伟, 翟丹丹, 王心, 等. 石墨烯/聚苯胺修饰阳极对微生物燃料电池性能的影响[J]. 化工学报, 2019, 70(06): 2343-235. DOI: 10.11949/j.issn.0438-1157.20181433.
[27] NAGA SAMRAT M V V, KESAVA RAO K, RUGGERI B, et al. Denitrification of water in a microbial fuel cell (MFC) using seawater bacteria[J]. Journal of cleaner production, 2018, 178: 449-456. DOI: 10.1016/j.jclepro.2017.12.221.
[28] YANG Y M, CHOI C, XIE G R, et al.Electron transfer interpretation of the biofilm-coated anode of a microbial fuel cell and the cathode modification effects on its power[J]. Bioelectrochemistry, 2019, 127: 94-103. DOI: 10.1016/j.bioelechem.2019.02.004.
[29] LIAO C M, WU J L, ZHOU L A, et al.Repeated transfer enriches highly active electrotrophic microbial consortia on biocathodes in microbial fuel cells[J]. Biosensors & bioelectronics, 2018, 121: 118-124. DOI: 10.1016/j.bios. 2018.08.066.
[30] 刘斌, 尚均顶, 王许云. 微生物燃料电池构型研究进展[J]. 当代化工, 2018, 47(10): 2173-2177. DOI: 10.13840/j.cnki.cn21-1457/tq.2018.10.046
[31] 虞洋, 胡淑恒, 程建萍, 等. 共基质型微生物燃料电池降解偶氮染料与产电[J]. 环境工程学报, 2017, 11(8): 4868-4873. DOI: 10.12030/j.cjee.201602120.
[32] 史雨茹, 冷川江, 常胜, 等. 微生物燃料电池连接方式对产电效率影响的比较[J]. 北京化工大学学报(自然科学版), 2018, 45(2): 1-9. DOI: 10.13543/j.bhxbzr.2018. 02.001.
[33] 崔心水, 赵剑强, 薛瑶, 等. 双阴极微生物燃料电池同步脱氮产电研究[J]. 中国给水排水, 2018, 34(5): 71-76.
[34] ZHAO Q, JI M, LI R Y, et al.Long-term performance of sediment microbial fuel cells with multiple anodes[J]. Bioresource technology, 2017, 237: 178-185. DOI: 10.1016/j.biortech.2017.03.002.
[35] NAGAR H, BADHRACHALAM N, RAO V V B, et al. A novel microbial fuel cell incorporated with polyvinylchloride/4A zeolite composite membrane for kitchen wastewater reclamation and power generation[J]. Materials chemistry and physics, 2019, 224: 175-185. DOI: 10.1016/j.matchemphys.2018.12.023.
[36] LIN X Q, LI Z L, LIANG B, et al.Identification of biofilm formation and exoelectrogenic population structure and function with graphene/polyanliline modified anode in microbial fuel cell[J]. Chemosphere, 2019, 219: 358-364. DOI: 10.1016/j.chemosphere.2018.11.212.
[37] 王佳, 荣宏伟, 张朝升, 等. 不同电极材料对阴极硝化耦合阳极反硝化微生物燃料电池性能的影响[J]. 环境工程学报, 2018, 12(2): 663-669. DOI: 10.12030/j.cjee. 201708036.
[38] 王美聪, 刘婷婷, 张学军, 等. 微生物燃料电池阳极材料改性研究进展[J]. 环境科学与技术, 2018, 41(10): 148-156. DOI: 10.19672/j.cnki.1003-6504.2018.10.021.
[39] ZHONG D J, LIAO X R, LIU Y Q, et al.Quick start-up and performance of microbial fuel cell enhanced with a polydiallyldimethylammonium chloride modified carbon felt anode[J]. Biosensors and bioelectronics, 2018, 119: 70-78. DOI: 10.1016/j.bios.2018.07.069.
[40] 陈稳稳, 刘中良, 侯俊先, 等. 新型超级电容器材料修饰尿液微生物燃料电池阳极的研究[J]. 工程热物理学报, 2018, 39(8): 1818-1823.
[41] 余登斌, 江岚, 王沛, 等. 碳纳米材料修饰阳极电极对微生物燃料电池传感器水体毒性检测灵敏度的影响[J]. 分析化学, 2018, 46(7): 1032-1038. DOI: 10.11895/j.issn.0253-3820.171372.
[42] IMRAN M, PRAKASH O, PUSHKAR P, et al.Performance enhancement of benthic microbial fuel cell by cerium coated electrodes[J]. Electrochimica acta, 2019, 295: 58-66. DOI: 10.1016/j.electacta.2018.08.158.
[43] ZHAO N, MA Z K, SONG H H, et al.Enhancement of bioelectricity generation by synergistic modification of vertical carbon nanotubes/polypyrrole for the carbon fibers anode in microbial fuel cell[J]. Electrochimica acta, 2019, 296: 69-74. DOI: 10.1016/j.electacta.2018.11.039.
[44] CAI T, HUANG M H, HUANG Y X, et al.Enhanced performance of microbial fuel cells by electrospinning carbon nanofibers hybrid carbon nanotubes composite anode[J]. International journal of hydrogen energy, 2019, 44(5): 3088-3098. DOI: 10.1016/j.ijhydene.2018.11.205.
[45] 谢涛, 高艳梅, 海热提, 等. 微生物燃料电池群落结构最新研究进展[J]. 环境科学与技术, 2016, 39(S1): 89-93.
[46] XU G F, ZHENG X Y, LU Y B, et al.Development of microbial community within the cathodic biofilm of single-chamber air-cathode microbial fuel cell[J]. Science of the total environment, 2019, 665: 641-648. DOI: 10.1016/j.scitotenv.2019.02.175.
[47] LOGAN B E.Peer Reviewed: extracting hydrogen and electricity from renewable resources[J]. Environmental science & technology, 2004, 38(9): 160A-167A. DOI: 10.1021/es040468s.
[48] JAVED M M, NISAR M A, AHMAD M U, et al.Microbial fuel cells as an alternative energy source: current status[J]. Biotechnology and genetic engineering reviews, 2018, 34(2): 216-242. DOI: 10.1080/02648725.2018.1482108.
[49] COMMAULT A S, LACZKA O, SIBONI N, et al.Electricity and biomass production in a bacteria-Chlorella based microbial fuel cell treating wastewater[J]. Journal of power sources, 2017, 356: 299-309. DOI: 10.1016/j. jpowsour.2017.03.097.
[50] 王鲁宁, 孙彩玉, 王佳瑜, 等. 连续流微生物燃料电池处理含重金属废水研究[J]. 环境科学与技术, 2017, 40(5): 107-113, 125. DOI: 10.3969/j.issn.1003-6504.2017. 05.018.
[51] PALANISAMY G, JUNG H Y, SADHASIVAM T, et al.A comprehensive review on microbial fuel cell technologies: processes, utilization, and advanced developments in electrodes and membranes[J]. Journal of cleaner production, 2019, 221: 598-621. DOI: 10.1016/j.jclepro.2019.02.172.
[52] ZHANG L F, FU G K, ZHANG Z.Electricity generation and microbial community in long-running microbial fuel cell for high-salinity mustard tuber wastewater treatment[J]. Bioelectrochemistry, 2019, 126: 20-28. DOI: 10.1016/j.bioelechem.2018.11.002.
[53] ZHANG X T, ZHANG D J, HUANG Y K, et al.Simultaneous removal of organic matter and iron from hydraulic fracturing flowback water through sulfur cycling in a microbial fuel cell[J]. Water research, 2018, 147: 461-471. DOI: 10.1016/j.watres.2018.10.020.
[54] 冯雅丽, 于莲, 李浩然, 等. 微生物燃料电池降解焦化废水过程研究[J]. 中国环境科学, 2018, 38(11): 4099-4105. DOI: 10.19674/j.cnki.issn1000-6923.2018.0454.
[55] 刘若男, 汪素芳, 岳秀萍. 温度冲击对MFCs脱氮及微生物群落结构的影响[J]. 应用化工, 2018, 47(12): 2681-2685. DOI: 10.16581/j.cnki.issn1671-3206.20181012.010.
[56] 刘若男, 赵博玮, 岳秀萍. 曝气量对微生物燃料电池脱氮的影响[J]. 环境化学, 2018, 37(6): 1317-1326.
[57] ZHONG L X, ZHANG S H, WEI Y, et al.Power recovery coupled with sulfide and nitrate removal in separate chambers using a microbial fuel cell[J]. Biochemical engineering journal, 2017, 124: 6-12. DOI: 10.1016/j.bej.2017.04.005.
[58] JAIN A, HE Z.“NEW” resource recovery from wastewater using bioelectrochemical systems: moving forward with functions[J]. Frontiers of environmental science & engineering, 2018, 12(4): 1. DOI: 10.1007/s11783-018-1052-9.
[59] GAJDA I, GREENMAN J, IEROPOULOS I A.Recent advancements in real-world Microbial Fuel Cell applications[J]. Current opinion in electrochemistry, 2018, 11: 78-83. DOI: 10.1016/j.coelec.2018.09.006.
[60] GUO H, KIM Y.Stacked multi-electrode design of microbial electrolysis cells for rapid and low-sludge treatment of municipal wastewater[J]. Biotechnology for biofuels, 2019, 12:23. DOI: 10.1186/s13068-019-1368-0.
[61] ROSSI R, EVANS P J, LOGAN B E.Impact of flow recirculation and anode dimensions on performance of a large scale microbial fuel cell[J]. Journal of power sources, 2019, 412: 294-300. DOI: 10.1016/j.jpowsour.2018.11.054.
[62] 王国振, 温洪宇, 蔡嘉颖, 等. 人工湿地-微生物燃料电池耦合系统的研究进展[J]. 生物技术通报, 2018, 35(1): 199-206. DOI: 10.13560/j.cnki.biotech.bull.1985.2018-0575.
[63] 朱娟平, 王健, 张太平, 等. 湿地植物-沉积物微生物燃料电池产电及河流底泥修复[J]. 环境工程学报, 2017, 11(6): 3891-3898. DOI: 10.12030/j.cjee.201603045.
[64] KRIEG T, ENZMANN F, SELL D, et al.Simulation of the current generation of a microbial fuel cell in a laboratory wastewater treatment plant[J]. Applied energy, 2017, 195: 942-949. DOI: 10.1016/j.apenergy.2017.03.101.
[65] WANG Y P, ZHANG H L, LI W W, et al.Improving electricity generation and substrate removal of a MFC-SBR system through optimization of COD loading distribution[J]. Biochemical engineering journal, 2014, 85: 15-20. DOI: 10.1016/j.bej.2014.01.008.
[66] GAJARAJ S, HU Z Q.Integration of microbial fuel cell techniques into activated sludge wastewater treatment processes to improve nitrogen removal and reduce sludge production[J]. Chemosphere, 2014, 117: 151-157. DOI: 10.1016/j.chemosphere.2014.06.013.
[67] MAHMOOD T, ELLIOTT A.A review of secondary sludge reduction technologies for the pulp and paper industry[J]. Water research, 2006, 40(11): 2093-2112. DOI: 10.1016/j.watres.2006.04.001
[68] AL-MAMUN A, BAAWAIN M S, EGGER F, et al.Optimization of a baffled-reactor microbial fuel cell using autotrophic denitrifying bio-cathode for removing nitrogen and recovering electrical energy[J]. Biochemical engineering journal, 2017, 120: 93-102. DOI: 10.1016/j.bej.2016.12.015.
[69] WANG X O, TIAN Y M, LIU H, et al.Optimizing the performance of organics and nutrient removal in constructed wetland-microbial fuel cell systems[J]. Science of the total environment, 2019, 653: 860-871. DOI: 10.1016/j.scitotenv.2018.11.005.
[70] MATEO S, CAÑIZARES P, ANDRÉS RODRIGO M, et al. Reproducibility and robustness of microbial fuel cells technology[J]. Journal of power sources, 2019, 412: 640-647. DOI: 10.1016/j.jpowsour.2018.12.007.