空气中CO2含量的增加导致了全球气候变暖问题。气体水合物能够有效分离出电厂尾气中的CO2,对改善环境具有重要意义。考察了微粉硅胶(silica gel)中80mol% N2与20mol% CO2混合气体水合物形成特性,选取压力范围为6.0 ~ 8.0 MPa,温度范围为 -20 ~ -5℃。研究发现,N2与CO2混合气进入反应釜后,直接生成水合物,诱导时间小于1 min。压力越高、温度越低,生成水合物的相对气体消耗量越大,最大的相对气体消耗量为0.115 (mol/mol),水的转化率最大为77.02mol%,前30 min水合物生成速率与压力无关。水合物气体消耗量越大,反应釜中剩余N2组分的含量越大,最大为90.95mol%。水合物生成驱动力越低,水合物中CO2 组分越高。在6.0 MPa、-5℃下,水合物中CO2组分最大为65.70mol%。
The increase of carbon dioxide content in the air leads to global climate problems. Gas hydrate can effectively separate carbon dioxide from power plant flue gas, which is of great significance to improve the environment. In this work, the CO2/N2 mixed gas hydrate formation in silica gel bed was studied under pressure and temperature ranges of (6.0 - 8.0 MPa) and (-20 - -5oC), respectively. Results showed that the mixed gas hydrate formed immediately when the flue gas was pressurized into the reactor, and the induction time was less than 1 min. The normalized gas consumption was larger at higher pressure or lower temperature. The largest normalized gas consumption was 0.115 (mol/mol), and the highest water conversion was 77.02mol%. Pressure had no effect on the normalized rate of gas consumed for the first 30 min. The gas proportion of N2 in equilibrium gas increased with the final gas consumption increase. The highest gas proportion of N2 in equilibrium gas was 90.95mol%. CO2 proportion in the hydrate was higher at lower hydrate formation driving force. The highest CO2 proportion in the hydrate was 65.70mol% at 6.0 MPa and -5oC.
[1] 刘妮, 赖晓玲, 白飞亚. 水合物法分离混合气中二氧化碳的实验研究[J]. 中国电机工程学报, 2017, 37(8): 2312-2319. DOI: 10.13334/j.0258-8013.pcsee.152655.
[2] ZHOU X B, LIANG D Q, LIANG S, et al.Recovering CH4 from natural gas hydrates with the injection of CO2-N2 gas mixtures[J]. Energy & fuels, 2015, 29(2): 1099-1106. DOI: 10.1021/ef5025824.
[3] 刘军, 马贵阳, 潘振, 等. 甲烷水合物生成分解的实验研究[J]. 化学工程, 2015, 43(11): 35-40. DOI: 10.3969/j.issn.1005-9954.2015.11.008.
[4] 刘军, 马贵阳, 潘振, 等. 水合物晶核充分发展对水合物生成量影响的实验研究[J]. 工程热物理学报, 2016, 37(5): 941-945.
[5] 刘军, 潘振, 马贵阳, 等. 降低“固封”对甲烷水合物生成的影响[J]. 化工进展, 2016, 35(5): 1410-1417. DOI: 10.16085/j.issn.1000-6613.2016.05.021.
[6] LEE Y, KIM Y, LEE J, et al.CH4 recovery and CO2 sequestration using flue gas in natural gas hydrates as revealed by a micro-differential scanning calorimeter[J]. Applied energy, 2015, 150: 120-127. DOI: 10.1016/j. apenergy.2015.04.012.
[7] NAMBIAR A, BABU P, LINGA P.CO2 capture using the clathrate hydrate process employing cellulose foam as a porous media[J]. Canadian journal of chemistry, 2015, 93(8): 808-814. DOI: 10.1139/cjc-2014-0547.
[8] YANG M J, SONG Y C, JIANG L L, et al.Behaviour of hydrate-based technology for H2/CO2 separation in glass beads[J]. Separation and purification technology, 2015, 141: 170-178. DOI: 10.1016/j.seppur.2014.11.019.
[9] ZHONG D L, WANG J L, LU Y Y, et al.Precombustion CO2 capture using a hybrid process of adsorption and gas hydrate formation[J]. Energy, 2016, 102: 621-629. DOI: 10.1016/j.energy.2016.02.135.
[10] SEO Y T, MOUDRAKOVSKI I L, RIPMEESTER J A, et al.Efficient recovery of CO2 from flue gas by clathrate hydrate formation in porous silica gels[J]. Environmental science & technology, 2005, 39(7): 2315-2319. DOI: 10.1021/es049269z.
[11] ADEYEMO A, KUMAR R, LINGA P, et al.Capture of carbon dioxide from flue or fuel gas mixtures by clathrate crystallization in a silica gel column[J]. International journal of greenhouse gas control, 2010, 4(3): 478-485. DOI: 10.1016/j.ijggc.2009.11.011.
[12] SEO Y, LEE S, CHA I, et al.Phase Equilibria of ethane and propane hydrates in porous silica gels[C]//Proceedings of the 9th International Conference on Chemical and Process Engineering. 2009, 17: 1479-1484. DOI: 10.3303/CET0917247.
[13] KANG S P, LEE J, SEO Y.Pre-combustion capture of CO2 by gas hydrate formation in silica gel pore structure[J]. Chemical engineering journal, 2013, 218: 126-132. DOI: 10.1016/j.cej.2012.11.131.
[14] KIM D, LEE H.Phase behavior of gas hydrates in nanoporous materials: review[J]. Korean journal of chemical engineering, 2016, 33(7): 1977-1988. DOI: 10.1007/s11814-016-0064-z.
[15] LEE W, KIM Y S, KANG S P.Semiclathrate-based CO2 capture from fuel gas in the presence of tetra-n-butyl ammonium bromide and silica gel pore structure[J]. Chemical engineering journal, 2018, 331: 1-7. DOI: 10.1016/j.cej.2017.08.108.
[16] LIU W G, WANG S R, YANG M J, et al.Investigation of the induction time for THF hydrate formation in porous media[J]. Journal of natural gas science and engineering, 2015, 24: 357-364. DOI: 10.1016/j.jngse.2015.03.030.
[17] SALAMATIN A N, FALENTY A, KUHS W F.Diffusion model for gas replacement in an isostructural CH4-CO2 hydrate system[J]. The journal of physical chemistry C, 2017, 121(33): 17603-17616. DOI: 10.1021/acs.jpcc.7b04391.
[18] WANG P F, YANG M J, CHEN B B, et al.Methane hydrate reformation in porous media with methane migration[J]. Chemical engineering science, 2017, 168: 344-351. DOI: 10.1016/j.ces.2017.04.036.
[19] LIU J, DING J X, LIANG D Q.Experimental study on hydrate-based gas separation of mixed CH4/CO2 using unstable ice in a silica gel bed[J]. Energy, 2018, 157: 54-64. DOI: 10.1016/j.energy.2018.05.124.
[20] SMITH J M.Introduction to chemical engineering thermodynamics[J]. Journal of chemical education, 1950, 27(10): 584. DOI: 10.1021/ed027p584.3.
[21] ZHONG D L, DARABOINA N, ENGLEZOS P.Coal mine methane gas recovery by hydrate formation in a fixed bed of silica sand particles[J]. Energy & fuels, 2013, 27(8): 4581-4588. DOI: 10.1021/ef400676g.