欢迎访问《新能源进展》官方网站!今天是

不同润湿性表面液滴铺展及蒸发过程的LBM数值模拟

  • 方可宁 ,
  • 单彦广 ,
  • 袁俊杰
展开
  • 上海理工大学 能源与动力工程学院,上海 200093
方可宁(1993-),女,硕士研究生,主要从事高效换热及强化传热传质研究。 单彦广(1976-),男,博士,教授,主要从事微尺度传热研究。

收稿日期: 2019-04-03

  修回日期: 2019-04-29

  网络出版日期: 2019-08-29

基金资助

国家自然科学基金项目(51676130)

LBM Numerical Simulation of Droplet Spreading and Evaporation on Surfaces with Different Wettability

  • FANG Ke-ning ,
  • SHAN Yan-guang ,
  • YUAN Jun-jie
Expand
  • School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China

Received date: 2019-04-03

  Revised date: 2019-04-29

  Online published: 2019-08-29

摘要

基于格子玻尔兹曼方法(Lattice Boltzmann Method, LBM)对固着在加热基板上的液滴铺展及蒸发过程进行模拟,主要研究重力场、基板润湿性以及初始环境温度对液滴铺展及蒸发过程的影响。通过预测蒸发过程中液滴与基板的接触直径变化和液滴剩余质量变化,分析液滴形状及体积变化。研究结果发现,液滴形貌及蒸发过程受重力影响较大,重力作用下液滴铺展现象明显且蒸发加快。基板的接触角越小,液滴铺展现象越明显,其接触直径越大,蒸发越快。当环境温度与基板温度相差较大时,液滴内部出现涡流,强化换热使蒸发过程加快。

本文引用格式

方可宁 , 单彦广 , 袁俊杰 . 不同润湿性表面液滴铺展及蒸发过程的LBM数值模拟[J]. 新能源进展, 2019 , 7(4) : 346 -353 . DOI: 10.3969/j.issn.2095-560X.2019.04.007

Abstract

Based on the Lattice Boltzmann Method (LBM), this paper simulated the droplet evaporation process sessile on the heated substrate, mainly exploring the influence of the actual gravity field, the substrate wettability and the initial environmental temperature field on the droplet evaporation. The flow and heat transfer of droplet were analyzed by the instantaneous evolution and internal velocity distribution of droplet. The shape and volume of droplet were analyzed by calculating the change of contact diameter and residual mass of droplet. The results show that the droplet evaporation process is greatly affected by gravity, and the droplet spreading phenomenon is obvious and evaporation is accelerated under the action of gravity. The smaller the contact angle of substrates, the more obvious the droplet spreading, the larger the contact diameter and the faster the evaporation. When the environmental temperature was quite different from that of the substrate, eddy current appears in the droplet, which intensifies the heat transfer and accelerates the evaporation process.

参考文献

[1] PICKNETT R G, BEXON R.The evaporation of sessile or pendant drops in still air[J]. Journal of colloid and interface science, 1977, 61(2): 336-350. DOI: 10.1016/0021-9797(77)90396-4.
[2] BIRDI K S, VU D T, WINTER A.A study of the evaporation rates of small water drops placed on a solid surface[J]. The Journal of Physical Chemistry, 1989, 93(9):3702-3703.
[3] RUIZ O E, BLACK W Z.Evaporation of water droplets placed on a heated horizontal surface[J]. Journal of heat transfer, 2002, 124(5): 854-863. DOI:10.1115/1.1494092.
[4] CIOULACHTJIAN S, LAUNAY S, BODDAERT S, et al.Experimental investigation of water drop evaporation under moist air or saturated vapour conditions[J]. International journal of thermal sciences, 2010, 49(6): 859-866. DOI: 10.1016/j.ijthermalsci.2009.12.014.
[5] TAKATA Y, HIDAKA S, YAMASHITA A, et al.Evaporation of water drop on a plasma-irradiated hydrophilic surface[J]. International journal of heat and fluid flow, 2004, 25(2): 320-328. DOI: 10.1016/j.ijheatfluidflow.2003.11.008.
[6] GELDERBLOM H, MARÍN Á G, NAIR H, et al. How water droplets evaporate on a superhydrophobic substrate[J]. Physical review E, 2011, 83(2): 026306. DOI: 10.1103/PhysRevE.83.026306.
[7] 葛瑶, 单彦广. 超疏水表面SiO2纳米流体液滴蒸发动力学研究[J]. 塑料工业, 2017, 45(5): 107-111, 101. DOI: 10.3969/j.issn.1005-5770.2017.05.026.
[8] 王希志, 单彦广, 饶玲. 超疏水表面液滴蒸发内部流体流动与传热分析[J]. 化学工程, 2017, 45(10): 27-32. DOI: 10.3969/j.issn.1005-9954.2017.10.006.
[9] 王宝和, 李群. 固着纯组分液滴蒸发的研究综述[J]. 干燥技术与设备, 2014, 12(5): 16-24. DOI: 10.16575/ j.cnki.issn1727-3080.2014.05.002.
[10] ROWAN S M, NEWTON M I, MCHALE G.Evaporation of microdroplets and the wetting of solid surfaces[J]. The journal of physical chemistry, 1995, 99(35): 13268-13271. DOI: 10.1021/j100035a034.
[11] XU W, LEELADHAR R, KANG Y T, et al.Evaporation kinetics of sessile water droplets on micropillared superhydrophobic surfaces[J]. Langmuir, 2013, 29(20): 6032-6041. DOI: 10.1021/la400452e.
[12] DUH J C, YANG W J.Numerical analysis of natural convection in liquid droplets by phase change[J]. Numerical heat transfer, part A: applications, 1989, 16(2): 129-154. DOI: 10.1080/10407788908944710.
[13] DI MARZO M, TARTARINI P, LIAO Y, et al.Evaporative cooling due to a gently deposited droplet[J]. International journal of heat and mass transfer, 1993, 36(17): 4133-4139. DOI: 10.1016/0017-9310(93)90075-H.
[14] 饶玲, 单彦广, 汪建兴. 极坐标下Marangoni应力对静止液滴蒸发过程的影响[J]. 工程热物理学报, 2017, 38(2): 289-295.
[15] GUNSTENSEN A K, ROTHMAN D H, ZALESKI S, et al.Lattice Boltzmann model of immiscible fluids[J]. Physical review A, 1991, 43(8): 4320-4327. DOI: 10.1103/PhysRevA.43.4320.
[16] GUNSTENSEN A K, ROTHMAN D H.Lattice- Boltzmann studies of immiscible two-phase flow through porous media[J]. Journal of geophysical research, 1993, 98(B4): 6431-6441. DOI: 10.1029/92JB02660.
[17] SHAN X W, CHEN H D.Lattice Boltzmann model for simulating flows with multiple phases and components[J]. Physical review E, 1993, 47(3): 1815-1819. DOI: 10.1103/PhysRevE.47.1815.
[18] KANG Q J, ZHANG D X, CHEN S Y.Displacement of a two- dimensional immiscible droplet in a channel[J]. Physics of fluids, 2002, 14(9): 3203-3214. DOI: 10.1063/1.1499125.
[19] SWIFT M R, OSBORN W R, YEOMANS J M.Lattice boltzmann simulation of nonideal fluids[J]. Physical review letters, 1995, 75(5): 830-833. DOI: 10.1103/PhysRevLett.75.830.
[20] HE X Y, CHEN S Y, DOOLEN G D.A novel thermal model for the lattice Boltzmann method in incompressible limit[J]. Journal of computational physics, 1998, 146(1): 282-300. DOI: 10.1006/jcph.1998.6057.
[21] HE X Y, CHEN S Y, ZHANG R Y.A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability[J]. Journal of computational physics, 1999, 152(2): 642-663. DOI: 10.1006/jcph.1999.6257.
[22] LEE T, LIU L.Lattice Boltzmann simulations of micron-scale drop impact on dry surfaces[J]. Journal of computational physics, 2010, 229(20): 8045-8063. DOI: 10.1016/j.jcp.2010.07.007.
[23] LATIFIYAN N, FARHADZADEH M, HANAFIZADEH P, et al.Numerical study of droplet evaporation in contact with hot porous surface using lattice Boltzmann method[J]. International communications in heat and mass transfer, 2016, 71: 56-74. DOI: 10.1016/j. icheatmasstransfer.2015.12.017.
[24] GONG S, CHENG P.Numerical investigation of droplet motion and coalescence by an improved lattice Boltzmann model for phase transitions and multiphase flows[J]. Computers & fluids, 2012, 53: 93-104. DOI: 10.1016/j.compfluid.2011.09.013.
[25] LI X P, ZHAO J A, CHENG P.A lattice Boltzmann model for condensation and freezing of dry saturated vapor about a cryogenic spot on an inclined hydrophobic surface[J]. International journal of heat and mass transfer, 2017, 114: 628-639. DOI: 10.1016/j.ijheatmasstransfer.2017.06.027.
[26] YI J, XING H L.Pore-scale simulation of effects of coal wettability on bubble-water flow in coal cleats using lattice Boltzmann method[J]. Chemical Engineering Science, 2017, 161:57-66. DOI: 10.1016/j.ces.2016.12.016.
[27] XIE C Y, ZHANG J Y, BERTOLA V, et al.Droplet evaporation on a horizontal substrate under gravity field by mesoscopic modeling[J]. Journal of colloid and interface science, 2016, 463: 317-323. DOI: 10.1016/j.jcis.2015.10.054.
文章导航

/