欢迎访问《新能源进展》官方网站!今天是

锂离子电池成组及一致性管理研究现状与展望

展开
  • 1. 中国科学院广州能源研究所,广州 510640;
    2. 中国科学院可再生能源重点实验室,广州 510640;
    3. 广东省新能源和可再生能源研究开发与应用重点实验室,广州 510640;
    4. 中国科学院大学,北京 100049
吕 杰(1984-),女,在职博士,副研究员,主要从事规模储电控制技术研究。宋文吉(1978-),男,博士,研究员,硕士生导师,主要从事先进储能技术研究。

收稿日期: 2019-06-05

  修回日期: 2019-07-05

  网络出版日期: 2019-08-29

基金资助

广东省自然科学基金项目(2018A030310077); 广东省新能源和可再生能源研究开发与应用重点实验室基金项目(Y809ji1001)

Research Progress on Lithium-Ion Battery Management in Energy Storage System

Expand
  • 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China;
    3. Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China;
    4. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2019-06-05

  Revised date: 2019-07-05

  Online published: 2019-08-29

摘要

归纳和总结锂离子电池和电池组模型、电池成组和电池一致性优化控制的研究方法和存在的问题。同时,对电池一致性管理研究趋势进行展望。提出应根据储能系统实际运行工况和电池成组方式,充分考虑电池连接方式、极柱引出位置、连接件阻抗等,优化电池组模型,提高模型精度。并根据模拟和实验结果,优化电池成组方式和控制策略,解决制约储能产业发展的电池组技术瓶颈。

本文引用格式

吕杰, 陈永珍, 宋文吉, 冯自平 . 锂离子电池成组及一致性管理研究现状与展望[J]. 新能源进展, 2019 , 7(4) : 379 -384 . DOI: 10.3969/j.issn.2095-560X.2019.04.012

Abstract

In this paper, the research of lithium-ion battery management in energy storage system was described from aspects of battery and battery model construction, influence of battery grouping method, and the optimal control of battery consistency. Research trend of battery management was prospected. A more targeted battery pack model and control strategy should be adopted to improve the model accuracy according to the actual operating condition and battery grouping mode in energy storage systems which include battery connection mode, position of battery module posts and connector impedance. Based on the simulation and experimental results, the battery grouping mode and control strategy were optimized to solve the bottleneck of battery pack technology.

参考文献

[1] 郭光朝, 李相俊, 张亮, 等. 单体电压不一致性对锂电池储能系统容量衰减的影响[J]. 电力建设, 2016, 37(11): 23-28. DOI: 10.3969/j.issn.1000-7229.2016.11.004.
[2] 朱运征, 李志强, 王浩, 等. 集装箱式储能系统用梯次利用锂电池组的一致性管理研究[J]. 电源学报, 2018, 16(4): 80-86. DOI: 10.13234/j.issn.2095-2805.2018.4.80.
[3] 胡轲. 大容量储能系统电池管理系统均衡技术研究[J]. 南方能源建设, 2018, 5(1): 40-44. DOI: 10.16516/j. gedi.issn2095-8676.2018.01.006.
[4] 任杰. 储能系统运行工况分析及应用[D]. 北京: 华北电力大学(北京), 2017: 19-30.
[5] ARANI A A K, GHAREHPETIAN G B, ABEDI M. Review on energy storage systems control methods in microgrids[J]. International journal of electrical power & energy systems, 2019, 107: 745-757. DOI: 10.1016/j. ijepes.2018.12.040.
[6] GAO Y Z, ZHANG X, YANG J, et al.Estimation of state-of-charge and state-of-health for lithium-ion degraded battery considering side reactions[J]. Journal of the electrochemical society, 2018, 165(16): A4018-A4026. DOI: 10.1149/2.0981816jes.
[7] 范刘洋, 汪可友, 张宝群, 等. 考虑电池组不一致性的储能系统建模及仿真[J]. 电力系统自动化, 2016, 40(3): 110-115. DOI: 10.7500/AEPS20150317015.
[8] LV J, SONG W J, LIN S L, et al.Investigation on dynamic equalisation performance of lithium battery pack management[J]. IET circuits, devices & systems, 2017, 11(4): 388-394. DOI: 10.1049/iet-cds.2016.0213.
[9] 王立业, 王丽芳, 刘伟龙. 基于容量差的电动汽车主动均衡控制策略研究[J]. 电工电能新技术, 2017
36(11): 44-50. DOI: 10.12067/ATEEE1703009.
[10] BERRUETA A, HECK M, JANTSCH M, et al.Combined dynamic programming and region-elimination technique algorithm for optimal sizing and management of lithium-ion batteries for photovoltaic plants[J]. Applied energy, 2018, 228: 1-11. DOI: 10.1016/j.apenergy.2018.06.060.
[11] XIONG R, DUAN Y Z, CAO J Y, et al.Battery and ultracapacitor in-the-loop approach to validate a real-time power management method for an all-climate electric vehicle[J]. Applied energy, 2018, 217: 153-165. DOI: 10.1016/j.apenergy.2018.02.128.
[12] WANG S L, TANG W, FERNANDEZ C, et al.A novel endurance prediction method of series connected lithium-ion batteries based on the voltage change rate and iterative calculation[J]. Journal of cleaner production, 2019, 210: 43-54. DOI: 10.1016/j.jclepro.2018.10.349.
[13] LV J, SONG W J, LIN S L, et al.Influence of equalization on LiFePO4 battery inconsistency[J]. International journal of energy research, 2017, 41(8): 1171-1181. DOI: 10.1002/er.3701.
[14] LATIFI M, RASTEGARNIA A, KHALILI A, et al.Agent-based decentralized optimal charging strategy for plug-in electric vehicles[J]. IEEE transactions on industrial electronics, 2019, 66(5): 3668-3680. DOI: 10.1109/TIE.2018.2853609.
[15] 林程, 周辉, 孙逢春, 等. 基于双路CAN总线的电动大客车整车控制器研究[J]. 北京汽车, 2015(5): 1-5. DOI: 10.14175/j.issn.1002-4581.2015.05.001.
[16] 程明. 电动汽车锂动力电池组状态估计方法研究[D]. 芜湖: 安徽工程大学, 2018: 3-4.
[17] 熊瑞. 基于数据模型融合的电动车辆动力电池组状态估计研究[D]. 北京: 北京理工大学, 2014: 31-57.
[18] 李云. 锂电池的建模与仿真[D]. 北京: 北方工业大学, 2018: 10-14.
[19] 应振华. 锂离子动力电池电化学建模与仿真[D]. 长春: 吉林大学, 2015: 4-8.
[20] 杨杰, 王婷, 杜春雨, 等. 锂离子电池模型研究综述[J]. 储能科学与技术, 2019, 8(1): 58-64.
[21] SAXENA S, XING Y J, KWON D, et al.Accelerated degradation model for C-rate loading of lithium-ion batteries[J]. International journal of electrical power & energy systems, 2019, 107: 438-445. DOI: 10.1016/j.ijepes.2018.12.016.
[22] 刘暘. 双源动车组动力电池组建模仿真技术研究[D]. 北京: 北京交通大学, 2014: 7-8.
[23] 王丽梅, 程勇. 连接片阻值对电动汽车用动力电池性能的影响[J]. 汽车工程, 2015, 37(1): 62-66, 101. DOI: 10.19562/j.chinasae.qcgc.2015.01.011.
[24] 李小均. 基于串并联补偿的电池成组技术[D]. 北京: 北京交通大学, 2018: 2-3.
[25] MA Y, DUAN P, SUN Y S, et al.Equalization of lithium-ion battery pack based on fuzzy logic control in electric vehicle[J]. IEEE transactions on industrial electronics, 2018, 65(8): 6762-6771. DOI: 10.1109/TIE.2018.2795578.
[26] YAN W Z, ZHANG B, ZHAO G Q, et al.A battery management system with a lebesgue-sampling-based extended kalman Filter[J]. IEEE transactions on industrial electronics, 2019, 66(4): 3227-3236. DOI: 10.1109/TIE.2018.2842782.
[27] BAEK D, CHANG N.Runtime power management of
battery electric vehicles for extended range with consideration of driving time[J]. IEEE transactions on very large scale integration (VLSI) systems, 2019, 27(3): 549-559. DOI: 10.1109/TVLSI.2018.2880441.
[28] WANG L M, ZHAO X L, LIU L, et al.Battery pack topology structure on state-of-charge estimation accuracy in electric vehicles[J]. Electrochimica acta, 2016, 219: 711-720. DOI: 10.1016/j.electacta.2016.10.078.
[29] WANG L M, CHENG Y, ZHAO X L.Influence of connecting plate resistance upon LiFePO4 battery performance[J]. Applied energy, 2015, 147: 353-360. DOI: 10.1016/j.apenergy.2015.03.016.
[30] LIN C J, XU S C, LI Z, et al.Thermal analysis of large-capacity LiFePO4 power batteries for electric vehicles[J]. Journal of power sources, 2015, 294: 633-642. DOI: 10.1016/j.jpowsour.2015.06.129.
[31] 吕超, 郑君, 罗伟林, 等. 锂离子电池热耦合SP+模型及其参数化简[J]. 电源学报, 2015, 13(3): 28-35. DOI: 10.13234/j.issn.2095-2805.2015.3.28.
[32] ECKER M, NIETO N, KÄBITZ S, et al. Calendar and cycle life study of Li(NiMnCo)O2-based 18650 lithium-ion batteries[J]. Journal of power sources, 2014, 248: 839-851. DOI: 10.1016/j.jpowsour.2013.09.143.
[33] NOELLE D J, WANG M, LE A V, et al.Internal resistance and polarization dynamics of lithium-ion batteries upon internal shorting[J]. Applied energy, 2018, 212: 796-808. DOI: 10.1016/j.apenergy.2017.12.086.
[34] LV J, LIN S L, SONG W J, et al.Performance of LiFePO4 batteries in parallel based on connection topology[J]. Applied energy, 2019, 252: 113407. DOI: 10.1016/j.apenergy.2019.113407.
[35] 胡棋威, 彭元亭, 李文斌. 锂离子电池成组安全技术研究进展[J]. 船电技术, 2015, 35(5): 35-39.
[36] SHANG Y L, ZHU C, FU Y H, et al.An integrated heater equalizer for lithium-ion batteries of electric vehicles[J]. IEEE transactions on industrial electronics, 2019, 66(6): 4398-4405. DOI: 10.1109/TIE.2018.2863187.
[37] YE M, GUO H, XIONG R, et al.A double-scale and adaptive particle filter-based online parameter and state of charge estimation method for lithium-ion batteries[J]. Energy, 2018, 144: 789-799. DOI: 10.1016/j.energy.2017.12.061.
[38] KIRBIŠ G, SELČAN D, KOS M, et al. High performance autonomous charge equalization in series connected batteries[J]. IEEE transactions on aerospace and electronic systems, 2019, 55(1): 95-107. DOI: 10.1109/TAES.2018.2848343.
[39] LIU K L, LI K, PENG Q, et al.A brief review on key technologies in the battery management system of electric vehicles[J]. Frontiers of mechanical engineering, 2019, 14(1): 47-64. DOI: 10.1007/s11465-018-0516-8.
[40] TANIZAWA T, SUZUMIYA T, IKEDA K.Cloud-connected battery management system supporting e-mobility[J]. Fujitsu scientific and technical journal, 2015, 51(4): 27-35.
[41] BARILLAS J K, LI J H, GÜNTHER C, et al. A comparative study and validation of state estimation algorithms for Li-ion batteries in battery management systems[J]. Applied energy, 2015, 155: 455-462. DOI: 10.1016/j.apenergy.2015.05.102.
[42] LAI X, JIANG C, ZHENG Y J, et al.A novel composite equalizer based on an additional cell for series-connected lithium-ion cells[J]. Electronics, 2018, 7(12): 366. DOI: 10.3390/electronics7120366.
[43] HAN W J, ZHANG L, HAN Y H.Computationally efficient methods for state of charge approximation and performance measure calculation in series-connected battery equalization systems[J]. Journal of power sources, 2015, 286: 145-158. DOI: 10.1016/j.jpowsour.2015.03.123.
[44] 王灿烨, 刘庚辛, 王鑫泉, 等. 基于主动均衡策略的电动汽车用锂电池管理系统设计研究[J]. 汽车技术, 2018(6): 5-10. DOI: 10.19620/j.cnki.1000-3703.20161180.
[45] SEE K W, LIM K C, BATTERNALLY S, et al.Charge-based self-equalization for imbalance battery pack in an energy storage management system: developing a time-based equalization algorithm[J]. IEEE consumer electronics magazine, 2019, 8(2): 16-21. DOI: 10.1109/MCE.2018.2880805.
[46] 叶凌云, 朱幸, 黄添添, 等. 变压器分立的动力电池组主动均衡技术研究[J]. 仪器仪表学报, 2018, 39(7): 83-91. DOI: 10.19650/j.cnki.cjsi.J1803516.
[47] GALLARDO-LOZANO J, ROMERO-CADAVAL E, MILANES-MONTERO M I, et al. Battery equalization active methods[J]. Journal of power sources, 2014, 246: 934-949. DOI: 10.1016/j.jpowsour.2013.08.026.
[48] DAOWD M, ANTOINE M, OMAR N, et al.Battery management system—balancing modularization based on a single switched capacitor and bi-directional DC/DC converter with the auxiliary battery[J]. Energies, 2014, 7(5): 2897-2937. DOI: 10.3390/en7052897.
[49] SHANG Y L, ZHANG C H, CUI N X, et al.A cell-to-cell battery equalizer with zero-current switching and zero-voltage gap based on quasi-resonant LC converter and boost converter[J]. IEEE transactions on power electronics, 2015, 30(7): 3731-3747. DOI: 10.1109/TPEL.2014.2345672.
[50] 史永胜, 魏浩, 李珏. 基于SOC的锂离子电池充放电均衡系统设计与仿真[J]. 自动化与仪表, 2018, 33(12): 83-88. DOI: 10.19557/j.cnki.1001-9944.2018.12.018.
[51] 商云龙, 张承慧, 崔纳新, 等. 基于模糊神经网络优化扩展卡尔曼滤波的锂离子电池荷电状态估计[J]. 控制理论与应用, 2016, 33(2): 212-220. DOI: 10.7641/CTA. 2016.41167.
[52] ZHANG S M, QIANG J X, YANG L, et al.Prior-knowledge-independent equalization to improve battery uniformity with energy efficiency and time efficiency for lithium-ion battery[J]. Energy, 2016, 94: 1-12. DOI: 10.1016/j.energy.2015.11.004.
[53] NGUYEN T T N, YOO H G, ORUGANTI S K, et al. Neuro-fuzzy controller for battery equalisation in serially connected lithium battery pack[J]. IET power electronics, 2015, 8(3): 458-466. DOI: 10.1049/iet-pel.2013.0657.
[54] WU Z, LING R, TANG R L.Dynamic battery equalization with energy and time efficiency for electric vehicles[J]. Energy, 2017, 141: 937-948. DOI: 10.1016/j.energy.2017.09.129.
文章导航

/