[1] 郭光朝, 李相俊, 张亮, 等. 单体电压不一致性对锂电池储能系统容量衰减的影响[J]. 电力建设, 2016, 37(11): 23-28. DOI: 10.3969/j.issn.1000-7229.2016.11.004.
[2] 朱运征, 李志强, 王浩, 等. 集装箱式储能系统用梯次利用锂电池组的一致性管理研究[J]. 电源学报, 2018, 16(4): 80-86. DOI: 10.13234/j.issn.2095-2805.2018.4.80.
[3] 胡轲. 大容量储能系统电池管理系统均衡技术研究[J]. 南方能源建设, 2018, 5(1): 40-44. DOI: 10.16516/j. gedi.issn2095-8676.2018.01.006.
[4] 任杰. 储能系统运行工况分析及应用[D]. 北京: 华北电力大学(北京), 2017: 19-30.
[5] ARANI A A K, GHAREHPETIAN G B, ABEDI M. Review on energy storage systems control methods in microgrids[J]. International journal of electrical power & energy systems, 2019, 107: 745-757. DOI: 10.1016/j. ijepes.2018.12.040.
[6] GAO Y Z, ZHANG X, YANG J, et al.Estimation of state-of-charge and state-of-health for lithium-ion degraded battery considering side reactions[J]. Journal of the electrochemical society, 2018, 165(16): A4018-A4026. DOI: 10.1149/2.0981816jes.
[7] 范刘洋, 汪可友, 张宝群, 等. 考虑电池组不一致性的储能系统建模及仿真[J]. 电力系统自动化, 2016, 40(3): 110-115. DOI: 10.7500/AEPS20150317015.
[8] LV J, SONG W J, LIN S L, et al.Investigation on dynamic equalisation performance of lithium battery pack management[J]. IET circuits, devices & systems, 2017, 11(4): 388-394. DOI: 10.1049/iet-cds.2016.0213.
[9] 王立业, 王丽芳, 刘伟龙. 基于容量差的电动汽车主动均衡控制策略研究[J]. 电工电能新技术, 2017
36(11): 44-50. DOI: 10.12067/ATEEE1703009.
[10] BERRUETA A, HECK M, JANTSCH M, et al.Combined dynamic programming and region-elimination technique algorithm for optimal sizing and management of lithium-ion batteries for photovoltaic plants[J]. Applied energy, 2018, 228: 1-11. DOI: 10.1016/j.apenergy.2018.06.060.
[11] XIONG R, DUAN Y Z, CAO J Y, et al.Battery and ultracapacitor in-the-loop approach to validate a real-time power management method for an all-climate electric vehicle[J]. Applied energy, 2018, 217: 153-165. DOI: 10.1016/j.apenergy.2018.02.128.
[12] WANG S L, TANG W, FERNANDEZ C, et al.A novel endurance prediction method of series connected lithium-ion batteries based on the voltage change rate and iterative calculation[J]. Journal of cleaner production, 2019, 210: 43-54. DOI: 10.1016/j.jclepro.2018.10.349.
[13] LV J, SONG W J, LIN S L, et al.Influence of equalization on LiFePO4 battery inconsistency[J]. International journal of energy research, 2017, 41(8): 1171-1181. DOI: 10.1002/er.3701.
[14] LATIFI M, RASTEGARNIA A, KHALILI A, et al.Agent-based decentralized optimal charging strategy for plug-in electric vehicles[J]. IEEE transactions on industrial electronics, 2019, 66(5): 3668-3680. DOI: 10.1109/TIE.2018.2853609.
[15] 林程, 周辉, 孙逢春, 等. 基于双路CAN总线的电动大客车整车控制器研究[J]. 北京汽车, 2015(5): 1-5. DOI: 10.14175/j.issn.1002-4581.2015.05.001.
[16] 程明. 电动汽车锂动力电池组状态估计方法研究[D]. 芜湖: 安徽工程大学, 2018: 3-4.
[17] 熊瑞. 基于数据模型融合的电动车辆动力电池组状态估计研究[D]. 北京: 北京理工大学, 2014: 31-57.
[18] 李云. 锂电池的建模与仿真[D]. 北京: 北方工业大学, 2018: 10-14.
[19] 应振华. 锂离子动力电池电化学建模与仿真[D]. 长春: 吉林大学, 2015: 4-8.
[20] 杨杰, 王婷, 杜春雨, 等. 锂离子电池模型研究综述[J]. 储能科学与技术, 2019, 8(1): 58-64.
[21] SAXENA S, XING Y J, KWON D, et al.Accelerated degradation model for C-rate loading of lithium-ion batteries[J]. International journal of electrical power & energy systems, 2019, 107: 438-445. DOI: 10.1016/j.ijepes.2018.12.016.
[22] 刘暘. 双源动车组动力电池组建模仿真技术研究[D]. 北京: 北京交通大学, 2014: 7-8.
[23] 王丽梅, 程勇. 连接片阻值对电动汽车用动力电池性能的影响[J]. 汽车工程, 2015, 37(1): 62-66, 101. DOI: 10.19562/j.chinasae.qcgc.2015.01.011.
[24] 李小均. 基于串并联补偿的电池成组技术[D]. 北京: 北京交通大学, 2018: 2-3.
[25] MA Y, DUAN P, SUN Y S, et al.Equalization of lithium-ion battery pack based on fuzzy logic control in electric vehicle[J]. IEEE transactions on industrial electronics, 2018, 65(8): 6762-6771. DOI: 10.1109/TIE.2018.2795578.
[26] YAN W Z, ZHANG B, ZHAO G Q, et al.A battery management system with a lebesgue-sampling-based extended kalman Filter[J]. IEEE transactions on industrial electronics, 2019, 66(4): 3227-3236. DOI: 10.1109/TIE.2018.2842782.
[27] BAEK D, CHANG N.Runtime power management of
battery electric vehicles for extended range with consideration of driving time[J]. IEEE transactions on very large scale integration (VLSI) systems, 2019, 27(3): 549-559. DOI: 10.1109/TVLSI.2018.2880441.
[28] WANG L M, ZHAO X L, LIU L, et al.Battery pack topology structure on state-of-charge estimation accuracy in electric vehicles[J]. Electrochimica acta, 2016, 219: 711-720. DOI: 10.1016/j.electacta.2016.10.078.
[29] WANG L M, CHENG Y, ZHAO X L.Influence of connecting plate resistance upon LiFePO4 battery performance[J]. Applied energy, 2015, 147: 353-360. DOI: 10.1016/j.apenergy.2015.03.016.
[30] LIN C J, XU S C, LI Z, et al.Thermal analysis of large-capacity LiFePO4 power batteries for electric vehicles[J]. Journal of power sources, 2015, 294: 633-642. DOI: 10.1016/j.jpowsour.2015.06.129.
[31] 吕超, 郑君, 罗伟林, 等. 锂离子电池热耦合SP+模型及其参数化简[J]. 电源学报, 2015, 13(3): 28-35. DOI: 10.13234/j.issn.2095-2805.2015.3.28.
[32] ECKER M, NIETO N, KÄBITZ S, et al. Calendar and cycle life study of Li(NiMnCo)O2-based 18650 lithium-ion batteries[J]. Journal of power sources, 2014, 248: 839-851. DOI: 10.1016/j.jpowsour.2013.09.143.
[33] NOELLE D J, WANG M, LE A V, et al.Internal resistance and polarization dynamics of lithium-ion batteries upon internal shorting[J]. Applied energy, 2018, 212: 796-808. DOI: 10.1016/j.apenergy.2017.12.086.
[34] LV J, LIN S L, SONG W J, et al.Performance of LiFePO4 batteries in parallel based on connection topology[J]. Applied energy, 2019, 252: 113407. DOI: 10.1016/j.apenergy.2019.113407.
[35] 胡棋威, 彭元亭, 李文斌. 锂离子电池成组安全技术研究进展[J]. 船电技术, 2015, 35(5): 35-39.
[36] SHANG Y L, ZHU C, FU Y H, et al.An integrated heater equalizer for lithium-ion batteries of electric vehicles[J]. IEEE transactions on industrial electronics, 2019, 66(6): 4398-4405. DOI: 10.1109/TIE.2018.2863187.
[37] YE M, GUO H, XIONG R, et al.A double-scale and adaptive particle filter-based online parameter and state of charge estimation method for lithium-ion batteries[J]. Energy, 2018, 144: 789-799. DOI: 10.1016/j.energy.2017.12.061.
[38] KIRBIŠ G, SELČAN D, KOS M, et al. High performance autonomous charge equalization in series connected batteries[J]. IEEE transactions on aerospace and electronic systems, 2019, 55(1): 95-107. DOI: 10.1109/TAES.2018.2848343.
[39] LIU K L, LI K, PENG Q, et al.A brief review on key technologies in the battery management system of electric vehicles[J]. Frontiers of mechanical engineering, 2019, 14(1): 47-64. DOI: 10.1007/s11465-018-0516-8.
[40] TANIZAWA T, SUZUMIYA T, IKEDA K.Cloud-connected battery management system supporting e-mobility[J]. Fujitsu scientific and technical journal, 2015, 51(4): 27-35.
[41] BARILLAS J K, LI J H, GÜNTHER C, et al. A comparative study and validation of state estimation algorithms for Li-ion batteries in battery management systems[J]. Applied energy, 2015, 155: 455-462. DOI: 10.1016/j.apenergy.2015.05.102.
[42] LAI X, JIANG C, ZHENG Y J, et al.A novel composite equalizer based on an additional cell for series-connected lithium-ion cells[J]. Electronics, 2018, 7(12): 366. DOI: 10.3390/electronics7120366.
[43] HAN W J, ZHANG L, HAN Y H.Computationally efficient methods for state of charge approximation and performance measure calculation in series-connected battery equalization systems[J]. Journal of power sources, 2015, 286: 145-158. DOI: 10.1016/j.jpowsour.2015.03.123.
[44] 王灿烨, 刘庚辛, 王鑫泉, 等. 基于主动均衡策略的电动汽车用锂电池管理系统设计研究[J]. 汽车技术, 2018(6): 5-10. DOI: 10.19620/j.cnki.1000-3703.20161180.
[45] SEE K W, LIM K C, BATTERNALLY S, et al.Charge-based self-equalization for imbalance battery pack in an energy storage management system: developing a time-based equalization algorithm[J]. IEEE consumer electronics magazine, 2019, 8(2): 16-21. DOI: 10.1109/MCE.2018.2880805.
[46] 叶凌云, 朱幸, 黄添添, 等. 变压器分立的动力电池组主动均衡技术研究[J]. 仪器仪表学报, 2018, 39(7): 83-91. DOI: 10.19650/j.cnki.cjsi.J1803516.
[47] GALLARDO-LOZANO J, ROMERO-CADAVAL E, MILANES-MONTERO M I, et al. Battery equalization active methods[J]. Journal of power sources, 2014, 246: 934-949. DOI: 10.1016/j.jpowsour.2013.08.026.
[48] DAOWD M, ANTOINE M, OMAR N, et al.Battery management system—balancing modularization based on a single switched capacitor and bi-directional DC/DC converter with the auxiliary battery[J]. Energies, 2014, 7(5): 2897-2937. DOI: 10.3390/en7052897.
[49] SHANG Y L, ZHANG C H, CUI N X, et al.A cell-to-cell battery equalizer with zero-current switching and zero-voltage gap based on quasi-resonant LC converter and boost converter[J]. IEEE transactions on power electronics, 2015, 30(7): 3731-3747. DOI: 10.1109/TPEL.2014.2345672.
[50] 史永胜, 魏浩, 李珏. 基于SOC的锂离子电池充放电均衡系统设计与仿真[J]. 自动化与仪表, 2018, 33(12): 83-88. DOI: 10.19557/j.cnki.1001-9944.2018.12.018.
[51] 商云龙, 张承慧, 崔纳新, 等. 基于模糊神经网络优化扩展卡尔曼滤波的锂离子电池荷电状态估计[J]. 控制理论与应用, 2016, 33(2): 212-220. DOI: 10.7641/CTA. 2016.41167.
[52] ZHANG S M, QIANG J X, YANG L, et al.Prior-knowledge-independent equalization to improve battery uniformity with energy efficiency and time efficiency for lithium-ion battery[J]. Energy, 2016, 94: 1-12. DOI: 10.1016/j.energy.2015.11.004.
[53] NGUYEN T T N, YOO H G, ORUGANTI S K, et al. Neuro-fuzzy controller for battery equalisation in serially connected lithium battery pack[J]. IET power electronics, 2015, 8(3): 458-466. DOI: 10.1049/iet-pel.2013.0657.
[54] WU Z, LING R, TANG R L.Dynamic battery equalization with energy and time efficiency for electric vehicles[J]. Energy, 2017, 141: 937-948. DOI: 10.1016/j.energy.2017.09.129.