欢迎访问《新能源进展》官方网站!今天是

天然气水合物沉积物分解过程中本构关系研究

  • 朱一铭 ,
  • 陈晨 ,
  • 陈忠勇 ,
  • 周述扬
展开
  • 南京理工大学 能源与动力工程学院,南京 210094
朱一铭(1988-),男,博士,讲师,硕士生导师,主要从事天然气水合物安全、高效开采研究。

收稿日期: 2019-05-30

  修回日期: 2019-09-25

  网络出版日期: 2019-10-29

基金资助

江苏省自然科学基金项目(BK20180479); 中央高校基本科研业务费专项资金资助项目(30919011286),江苏省大学生创新创业训练计划项目(201810288040X)

A Constitutive Model of Hydrate-Bearing Sediments Considering the Hydrate Dissociation

  • ZHU Yi-ming ,
  • CHEN Chen ,
  • CHEN Zhong-yong ,
  • ZHOU Shu-yang
Expand
  • School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

Received date: 2019-05-30

  Revised date: 2019-09-25

  Online published: 2019-10-29

摘要

天然气水合物具有储量大、分布广泛、清洁燃烧等优点,近年来受到研究人员的广泛关注。为了实现天然气水合物资源的安全高效开采,对其沉积层的力学稳定性进行系统评估是十分必要的。本研究在实验室内重塑了40%孔隙度的天然气水合物沉积物试样,并基于力学实验设备,对其在不同围压条件下分解过程中的力学强度及变形进行了一系列测试,获取了相应的应力应变数据。研究结果表明,水合物分解会造成沉积层强度的降低。此外,基于实验数据,在借鉴土力学邓肯-张本构模型的基础上,考虑了围压及分解时间对沉积物力学特性的影响,本文构建了适用于不同围压条件下天然气水合物沉积物分解过程中的本构模型,研究结果表明,该模型可以较好地模拟沉积物试样在分解过程中的应力应变关系,可为实现天然气水合物的安全开采提供一定的理论依据。

本文引用格式

朱一铭 , 陈晨 , 陈忠勇 , 周述扬 . 天然气水合物沉积物分解过程中本构关系研究[J]. 新能源进展, 2019 , 7(5) : 385 -392 . DOI: 10.3969/j.issn.2095-560X.2019.05.001

Abstract

Natural gas hydrate has the advantages of large reserves, wide distribution and clean combustion. In recent years, it has attracted a wide spread attention. In order to realize the safe and efficient exploitation of natural gas hydrate, it is necessary to systematically evaluate the mechanical stability of hydrate-bearing sediments. In this paper, the methane hydrate-bearing sediments with 40% porosity were remoulded firstly, and based on the laboratory equipment for mechanics experiments, under the conditions of different confining pressures, a series of triaxial compression tests were performed. The strength and deformation characteristics of the sediments during hydrate dissociation were obtained, and the corresponding stress-strain curves were drawn. The results showed that the decomposition of natural gas hydrate can lead to the reduction of the sediments strength. In addition, based on the experimental data and the Duncan-Chang constitutive model, considering the influence of confining pressure and the dissociation time, a constitutive model of the sediment samples in the process of decomposition was constructed. This model could well simulate the stress-strain relationship of the sediments during the hydrate dissociation, providing the theoretical references to evaluate the stability of gas hydrate reservoirs.

参考文献

[1] 金庆焕. 天然气水合物——未来的新能源[J]. 中国工程科学, 2000, 2(11): 29-34, 77. DOI: 10.3969/j.issn. 1009-1742.2000.11.005.
[2] KVENVOLDEN K A.Gas hydrates—geological perspective and global change[J]. Reviews of geophysics, 1993, 31(2): 173-187. DOI: 10.1029/93rg00268.
[3] YANG L, AI L, XUE K H, et al.Analyzing the effects of inhomogeneity on the permeability of porous media containing methane hydrates through pore network models combined with CT observation[J]. Energy, 2018, 163: 27-37. DOI: 10.1016/j.energy.2018.08.100.
[4] 李洋辉. 天然气水合物沉积物强度及变形特性研究[D]. 大连: 大连理工大学, 2013.
[5] LI Y H, WU P, LIU W G, et al.A microfocus x-ray computed tomography based gas hydrate triaxial testing apparatus[J]. Review of scientific instruments, 2019, 90(5): 055106. DOI: 10.1063/1.5095812.
[6] SUN X, LUO T T, WANG L, et al.Numerical simulation of gas recovery from a low-permeability hydrate reservoir by depressurization[J]. Applied energy, 2019, 250: 7-18. DOI: 10.1016/j.apenergy.2019.05.035.
[7] SUN X, WANG L, LUO H, et al.Numerical modeling for the mechanical behavior of marine gas hydrate-bearing sediments during hydrate production by depressurization[J]. Journal of petroleum science and engineering, 2019, 177: 971-982. DOI: 10.1016/j.petrol.2019.03.012.
[8] MIYAZAKI K, MASUI A, HANEDA H, et al.Variable-compliance-type constitutive model for methane hydrate bearing sediment[C]//Proceedings of the 6th International Conference on Gas Hydrates. Vancouver, Canada: ICGH, 2008: 6-10.
[9] SUN X, GUO X X, SHAO L T, et al.A thermodynamics-based critical state constitutive model for methane hydrate bearing sediment[J]. Journal of natural gas science and engineering, 2015, 27: 1024-1034. DOI: 10.1016/j.jngse.2015.09.048.
[10] YU F, SONG Y C, LIU W G, et al.Analyses of stress strain behavior and constitutive model of artificial methane hydrate[J]. Journal of petroleum science and engineering, 2011, 77(2): 183-188. DOI: 10.1016/j.petrol.2011.03.004.
[11] LI Y H, SONG Y C, LIU W G, et al.A new strength criterion and constitutive model of gas hydrate-bearing sediments under high confining pressures[J]. Journal of petroleum science and engineering, 2013, 109: 45-50. DOI: 10.1016/j.petrol.2013.08.010.
[12] UCHIDA S, SOGA K, YAMAMOTO K.Critical state soil constitutive model for methane hydrate soil[J]. Journal of geophysical research: solid earth, 2012, 117(B3): B03209. DOI: 10.1029/2011JB008661.
[13] LIU W G, ZHAO J F, LUO Y, et al.Experimental measurements of mechanical properties of carbon dioxide hydrate-bearing sediments[J]. Marine and petroleum geology, 2013, 46: 201-209. DOI: 10.1016/j.marpetgeo.2013.06.016.
[14] LIU W G, LUO T T, LI Y H, et al.Experimental study on the mechanical properties of sediments containing CH4 and CO2 hydrate mixtures[J]. Journal of natural gas science and engineering, 2016, 32: 20-27. DOI: 10.1016/j.jngse.2016.03.012.
[15] LUO T T, SONG Y C, ZHU Y M, et al.Triaxial experiments on the mechanical properties of hydrate-bearing marine sediments of South China Sea[J]. Marine and petroleum geology, 2016, 77: 507-514. DOI: 10.1016/j.marpetgeo.2016.06.019.
[16] SONG Y C, ZHU Y M, LIU W G, et al.Experimental research on the mechanical properties of methane hydrate-bearing sediments during hydrate dissociation[J]. Marine and petroleum geology, 2014, 51: 70-78. DOI: 10.1016/j.marpetgeo.2013.11.017.
[17] 于锋. 甲烷水合物及其沉积物的力学特性研究[D]. 大连: 大连理工大学, 2011.
[18] SONG Y C, ZHU Y M, LIU W G, et al.The effects of methane hydrate dissociation at different temperatures on the stability of porous sediments[J]. Journal of petroleum science and engineering, 2016, 147: 77-86. DOI: 10.1016/j.petrol.2016.05.009.
[19] TAKEYA S, SHIMADA W, KAMATA Y, et al.In situ X-ray diffraction measurements of the self-preservation effect of CH4 hydrate[J]. The journal of physical chemistry A, 2001, 105(42): 9756-9759. DOI: 10.1021/jp011435r.
[20] 张欣, 丁秀丽, 李术才. ABAQUS有限元分析软件中Duncan-Chang模型的二次开发[J]. 长江科学院院报, 2005, 22(4): 45-47, 51. DOI: 10.3969/j.issn.1001-5485.2005.04.013.
文章导航

/