欢迎访问《新能源进展》官方网站!今天是

太阳能集热及用于提升低品位热能的理论分析

  • 姜海洋 ,
  • 程晓舫
展开
  • 中国科学技术大学 热科学和能源工程系,合肥 230026
姜海洋(1992-),男,硕士研究生,主要从事太阳能集热、太阳能用以提升低品位热能的研究。程晓舫(1957-),男,博士,教授,博士生导师,主要从事热辐射信息的测量与辨读、光伏器件解析方法的研究。

收稿日期: 2019-05-07

  修回日期: 2019-06-01

  网络出版日期: 2019-10-29

基金资助

国家自然科学基金项目(50976112)

Theoretical Analysis of Solar Energy Collection and Its Application in Promoting Low-Grade Thermal Energy

  • JIANG Hai-yang ,
  • CHENG Xiao-fang
Expand
  • Department of thermal science and energy engineering, University of science and technology of China, Hefei 230026, China

Received date: 2019-05-07

  Revised date: 2019-06-01

  Online published: 2019-10-29

摘要

基于热力学第一、第二定律,运用集总热容法对太阳能集热以及太阳能在提升低品位热能的过程中所遇到的问题进行理论分析。分析得出了太阳能集热过程中集热器的集热度B与集热工质温度T之间的函数关系,可用于集热方式的选择。在太阳能热利用中选择性涂层的设计影响着集热的效率,通过分析给出选择性涂层设计的截止波长应位于曲线交叉点处的波长。在提升低品位热能时发现存在集热时间缩短的问题,通过加热容积热容量ρc较小的新工质,形成温差对低品位热能间接加热,提高太阳能的利用率。

本文引用格式

姜海洋 , 程晓舫 . 太阳能集热及用于提升低品位热能的理论分析[J]. 新能源进展, 2019 , 7(5) : 393 -397 . DOI: 10.3969/j.issn.2095-560X.2019.05.002

Abstract

Based on the first and second laws of thermodynamics, solar energy heat collection and the problems encountered by solar energy in the process of upgrading low-grade heat energy were theoretically analyzed by using the lumped heat capacity method. The functional relationship between the collector heat B of the collector and the collector heat mass temperature T in the solar energy heat collection process were obtained, which can be used for the selection of heat collection modes. The efficiency of heat concentrating in solar thermal utilization was influenced by selective coating design. Analysis showed that the cut-off wavelength of selective coating design should be located at the wavelength of curve intersection. It was found that the heat collection time was shortened when upgrading low-grade heat energy. By heating new working medium with less ρc, the temperature difference was formed to indirectly heat the low-grade heat energy, and the utilization rate of solar energy was improved.

参考文献

[1] 胡桂秋, 陈军. 太阳能热发电系统的现状研究[J]. 武汉理工大学学报, 2009, 31(16): 154-157.
[2] ZAKHIDOV R A, ANARBAEV A I.Application of solar heat sources at thermal electric power plants[J]. Applied solar energy, 2010, 46(1): 66-70. DOI: 10.3103/S0003701X10010147.
[3] XIAO C F, LUO H L, TANG R S, et al.Solar thermal utilization in China[J]. Renewable energy, 2004, 29(9): 1549-1556. DOI: 10.1016/j.renene.2004.01.015.
[4] RAMAIAH R, SHEKAR K S S. Solar thermal energy utilization for medium temperature industrial process heat applications - a review[J]. IOP conference series: Materials science and engineering, 2018, 376: 012035. DOI: 10.1088/1757-899X/376/1/012035.
[5] 毛前军, 张丽娅, 吴红军. 高温太阳能蓄热熔融盐的制备及熔点测试[J]. 暖通空调, 2016, 46(8): 117-119.
[6] 王靖. 热水余热制冷技术在塔河油田溴冷机中央空调上的应用[J]. 节能, 2019, 38(1): 63-65.
[7] 马伟斌, 夏文汇, 余传祓. 热水型溴化锂两级吸收式制冷机在工业中的应用[J]. 制冷, 1998(4): 37-40.
[8] TABOR H.Selective radiation: I. Wavelength discrimination[J]. Bull res council Israel, 1956, 5A(2): 119.
[9] RAMÍREZ-RINCÓN J A, ARES-MUZIO O, MACIAS J D, et al. On the use of photothermal techniques for the characterization of solar-selective coatings[J]. Applied physics A, 2018, 124(3): 252. DOI: 10.1007/s00339-018-1667-5.
[10] REBOUTA L, SOUSA A, ANDRITSCHKY M, et al.Solar selective absorbing coatings based on AlSiN/AlSiON/AlSiOy layers[J]. Applied surface science, 2015, 365: 203-212. DOI: 10.1016/j.apsusc.2015.07.193.
[11] 葛新石. 太阳能利用中的光谱选择性涂层[M]. 北京: 科学出版社, 1980.
文章导航

/