欢迎访问《新能源进展》官方网站!今天是

木糖热解过程中丙酮形成机理的理论研究

  • 高丽娟 ,
  • 李文涛 ,
  • 韩晓峰 ,
  • 胡斌 ,
  • 范馨蕊 ,
  • 牛天祥 ,
  • 陆强
展开
  • 1. 中国电建集团西北勘测设计研究院有限公司,西安 710065;
    2. 华北电力大学,生物质发电成套设备国家工程实验室,北京 102206
高丽娟(1984-),女,硕士研究生,工程师,主要从事生物质能高效清洁利用研究。陆 强(1982-),男,博士,教授,博士生导师,主要从事固体燃料高效热利用以及烟气污染物治理的研究。

收稿日期: 2019-06-26

  修回日期: 2019-07-10

  网络出版日期: 2019-10-29

基金资助

国家自然科学基金项目(51576064);中国电建集团公司科技项目(DJ-ZDXM-2015-20)

A Theoretical Study on the Formation Mechanism of Acetone in the Process of Xylose Pyrolysis

  • GAO Li-juan ,
  • LI Wen-tao ,
  • HAN Xiao-feng ,
  • HU Bin ,
  • FAN Xin-rui ,
  • NIU Tian-xiang ,
  • LU Qiang
Expand
  • 1. Northwest Engineering Corporation Limited, Xi’an 710065, China;
    2. National Engineering Laboratory for Biomass Power Generation Equipment, North China Electric Power University, Beijing 102206, China

Received date: 2019-06-26

  Revised date: 2019-07-10

  Online published: 2019-10-29

摘要

丙酮是半纤维素热解过程中重要的酮类产物,但其生成机理仍不清楚。本文以典型的半纤维素基单糖——木糖为模型化合物,基于密度泛函理论方法计算其分解生成丙酮的可能路径,同时讨论了温度对丙酮形成路径竞争性的影响。结果表明,木糖热解过程中,四碳中间体3-羰基丁醛是形成丙酮的重要中间体。木糖热解最可能经3-戊酮糖分解路径形成C1-C2-C3位或C3-C4-C5位丙酮,同时也易经D-木糖分解路径形成C3-C4-C5位丙酮,高温下木糖热解生成C2-C3-C4位丙酮的比例增多。

本文引用格式

高丽娟 , 李文涛 , 韩晓峰 , 胡斌 , 范馨蕊 , 牛天祥 , 陆强 . 木糖热解过程中丙酮形成机理的理论研究[J]. 新能源进展, 2019 , 7(5) : 405 -414 . DOI: 10.3969/j.issn.2095-560X.2019.05.004

Abstract

Acetone is an important ketone product in hemicellulose pyrolysis, whereas, its formation mechanism is still unclear. In this paper, xylose, a typical hemicellulose monosaccharide, was selected as a model compound. Density functional theory (DFT) calculations were employed to reveal the possible pathways for generating acetone in xylose pyrolysis. The influence of temperature on the competitiveness of possible pathways was also discussed. The results showed that 3-carbonyl butyraldehyde, a four-carbon-intermediate, was an important intermediate for the formation of acetone during the pyrolysis of xylose. The decomposition pathways of 3-ketopentose were the most favorable for acetone formation from the C1-C2-C3 and C3-C4-C5 segments of xylose. The decomposition of D-xylose can also easily results in the formation of C3-C4-C5 acetone. With the temperature increase, the proportion of C2-C3-C4 acetone increased correspondingly.

参考文献

[1] 国家能源局. 生物质能发展“十三五”规划[R]. 北京: 国家能源局, 2016.
[2] GUEDES R E, LUNA A S, TORRES A R.Operating parameters for bio-oil production in biomass pyrolysis: a review[J]. Journal of analytical and applied pyrolysis, 2018, 129: 134-149. DOI: 10.1016/j.jaap.2017.11.019.
[3] MASCHIO G, KOUFOPANOS C, LUCCHESI A.Pyrolysis, a promising route for biomass utilization[J]. Bioresource technology, 1992, 42(3): 219-231. DOI: 10.1016/0960-8524(92)90025-S.
[4] WANG S R, DAI G X, YANG H P, et al.Lignocellulosic biomass pyrolysis mechanism: a state-of- the-art review[J]. Progress in energy and combustion science, 2017, 62: 33-86. DOI: 10.1016/j.pecs.2017.05.004.
[5] ZHOU X W, LI W J, MABON R, et al.A critical review on hemicellulose pyrolysis[J]. Energy technology, 2017, 5(1): 52-79. DOI: 10.1002/ente.201600327.
[6] ZHOU X W, LI W J, MABON R, et al.A mechanistic model of fast pyrolysis of hemicellulose[J]. Energy & environmental science, 2018, 11(5): 1240-1260. DOI: 10.1039/C7EE03208K.
[7] WANG S R, LIANG T, RU B, et al.Mechanism of xylan pyrolysis by Py-GC/MS[J]. Chemical research in Chinese universities, 2013, 29(4): 782-787. DOI: 10.1007/s40242-013-2447-6.
[8] SHEN D K, GU S, BRIDGWATER A V.The thermal performance of the polysaccharides extracted from hardwood: cellulose and hemicellulose[J]. Carbohydrate polymers, 2010, 82(1): 39-45. DOI: 10.1016/j.carbpol.2010.04.018.
[9] SHAFIZADEH F, MCGINNIS G D, PHILPOT C W.Thermal degradation of xylan and related model compounds[J]. Carbohydrate research, 1972, 25(1): 23-33. DOI: 10.1016/S0008-6215(00)82742-1.
[10] PENG Y Y, WU S B.The structural and thermal characteristics of wheat straw hemicellulose[J]. Journal of analytical and applied pyrolysis, 2010, 88(2): 134-139. DOI: 10.1016/j.jaap.2010.03.006.
[11] SHEN D K, GU S, BRIDGWATER A V.Study on the pyrolytic behaviour of xylan-based hemicellulose using TG-FTIR and Py-GC-FTIR[J]. Journal of analytical and applied pyrolysis, 2010, 87(2): 199-206. DOI: 10.1016/j.jaap.2009.12.001.
[12] HUANG J B, HE C, WU L Q, et al.Thermal degradation reaction mechanism of xylose: a DFT study[J]. Chemical physics letters, 2016, 658: 114-124. DOI: 10.1016/j.cplett.2016.06.025.
[13] HUANG J B, LIU C, TONG H, et al.Theoretical studies on pyrolysis mechanism of O-acetyl-xylopyranose[J]. Journal of fuel chemistry and technology, 2013, 41(3): 285-293. DOI: 10.1016/S1872-5813(13)60019-5.
[14] 吴隆琴, 黄金保, 童红, 等. 吡喃木糖热裂解机理的密度泛函理论研究[J]. 原子与分子物理学报, 2017, 34(2): 200-212.
[15] PAINE III J B, PITHAWALLA Y B, NAWORAL J D. Carbohydrate pyrolysis mechanisms from isotopic labeling: Part 3. The pyrolysis of D-glucose: formation of C3 and C4 carbonyl compounds and a cyclopentenedione isomer by electrocyclic fragmentation mechanisms[J]. Journal of analytical and applied pyrolysis, 2008, 82(1): 42-69. DOI: 10.1016/j.jaap.2007.12.005.
[16] KOHN W, BECKE A D, PARR R G.Density functional theory of electronic structure[J]. The journal of physical chemistry, 1996, 100(31): 12974-12980. DOI: 10.1021/jp960669l.
[17] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al.Gaussian 09 [CP]. Gaussian 09, Revision D01, Gaussian, Inc, Wallingford CT, 2013.
[18] CANNEAUX S, BOHR F, HENON E.KiSThelP: a program to predict thermodynamic properties and rate constants from quantum chemistry results[J]. Journal of computational chemistry, 2014, 35(1): 82-93. DOI: 10.1002/jcc.23470.
[19] WANG M, LIU C, LI Q B, et al.Theoretical insight into the conversion of xylose to furfural in the gas phase and water[J]. Journal of molecular modeling, 2015, 21(11): 296. DOI: 10.1007/s00894-015-2843-6.
[20] 田慧云, 胡斌, 张阳, 等. 吡喃木糖和O-乙酰基吡喃木糖热解形成羟基乙醛的机理研究[J]. 燃料化学学报, 2015, 43(2): 185-194. DOI: 10.3969/j.issn.0253-2409. 2015.02.008.
[21] 张智, 刘朝, 李豪杰, 等. 木聚糖单体热解机理的理论研究[J]. 化学学报, 2011, 69(18): 2099-2107.
[22] LU Q, TIAN H Y, HU B, et al.Pyrolysis mechanism of holocellulose-based monosaccharides: the formation of hydroxyacetaldehyde[J]. Journal of analytical and applied pyrolysis, 2016, 120: 15-26. DOI: 10.1016/j.jaap.2016.04.003.
[23] HU B, LU Q, JIANG X Y, et al.Formation mechanism of hydroxyacetone in glucose pyrolysis: a combined experimental and theoretical study[J]. Proceedings of the combustion institute, 2019, 37(3): 2741-2748. DOI: 10.1016/j.proci.2018.05.146.
[24] HU B, LU Q, JIANG X Y, et al.Pyrolysis mechanism of glucose and mannose: the formation of 5-hydroxymethyl furfural and furfural[J]. Journal of energy chemistry, 2018, 27: 486-501. DOI: 10.1016/j.jechem.2017.11.013.
文章导航

/