欢迎访问《新能源进展》官方网站!今天是

低共熔溶剂在木质纤维素预处理促进酶水解效率的研究进展

  • 陈鑫东 ,
  • 熊莲 ,
  • 黎海龙 ,
  • 陈新德
展开
  • 1. 中国科学院广州能源研究所,广州 510640;
    2. 中国科学院可再生能源重点实验室,广州 510640;
    3. 广东省新能源和可再生能源研究开发与应用重点实验室,广州 510640;
    4. 中国科学院大学,北京 100049
陈鑫东(1996-),男,硕士研究生,主要从事木质纤维素高效水解与高值化利用研究。黎海龙(1988-),男,博士,副研究员,主要从事木质纤维素高效水解与高值化利用研究。陈新德(1967-),男,教授级高级工程师,主要从事生物质能研究。

收稿日期: 2019-04-29

  修回日期: 2019-05-21

  网络出版日期: 2019-10-29

基金资助

国家自然科学基金项目(31600475); 广东省自然科学基金项目(2016A030310124,2017A030310052)

Research Progress of Deep Eutectic Solvent in Lignocellulose Pretreatment to Promote Enzymatic Hydrolysis Efficiency

  • CHEN Xin-dong ,
  • XIONG Lian ,
  • LI Hai-long ,
  • CHEN Xin-de
Expand
  • 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China;
    3. Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China;
    4. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2019-04-29

  Revised date: 2019-05-21

  Online published: 2019-10-29

摘要

低共熔溶剂作为一种环境友好的新型溶剂,可高效去除木质纤维素中的木质素,同时保留大部分纤维素。此外,低共熔溶剂具有制备简单、无毒性和可循环使用等特点,在木质纤维素生物炼制生产燃料和化学品方面具有较大的工业化应用潜力。本文详细介绍了低共熔溶剂的种类和性质,总结了低共熔溶剂种类和反应条件对纤维素、半纤维素和木质素三组分物理化学结构的影响,并讨论了其对酶水解反应的促进机制。最后根据低共熔溶剂预处理存在的问题,提出基于木质纤维素结构特征和相应的预处理目的,对低共熔溶剂进行理性设计和循环利用,以实现木质纤维素低成本预处理和全组分高值化利用的思路。

本文引用格式

陈鑫东 , 熊莲 , 黎海龙 , 陈新德 . 低共熔溶剂在木质纤维素预处理促进酶水解效率的研究进展[J]. 新能源进展, 2019 , 7(5) : 415 -422 . DOI: 10.3969/j.issn.2095-560X.2019.05.005

Abstract

As a new type of solvent which is friendly to environment, deep eutectic solvent can efficiently remove the lignin from lignocellulose while retaining most of the cellulose. In addition, deep eutectic solvent has the characteristics of simple preparation, non-toxicity and recyclability, which shows great industrial application potential in lignocellulosic biorefinery for the production of fuels and chemicals. In this review, the types and properties of deep eutectic solvent were introduced in detail. The effects of deep eutectic solvent types and reaction conditions on the physicochemical structures of cellulose, hemicellulose and lignin were summarized. Furthermore, the mechanisms of promoting enzymatic hydrolysis by deep eutectic solvent pretreatment were reviewed and discussed. Finally, according to the existing problems of deep eutectic solvent, the idea of rational design and recycling utilization of deep eutectic solvent based on the structural characteristics of lignocellulose and corresponding pretreatment purpose was put forward to realize low-cost pretreatment and high value utilization of lignocellulose.

参考文献

[1] 张成武. 低共熔溶剂预处理木质纤维素的研究[D]. 天津: 天津大学, 2016.
[2] ANUGWOM I, MÄKI-ARVELA P, VIRTANEN P, et al. Selective extraction of hemicelluloses from spruce using switchable ionic liquids[J]. Carbohydrate polymers, 2012, 87(3): 2005-2011. DOI: 10.1016/j.carbpol.2011.10.006.
[3] 李利芬. 基于氯化胆碱低共熔溶剂的木质素提取改性和降解研究[D]. 哈尔滨: 东北林业大学, 2015.
[4] BALAKSHIN M, CAPANEMA E, GRACZ H, et al.Quantification of lignin-carbohydrate linkages with high-resolution NMR spectroscopy[J]. Planta, 2011, 233(6): 1097-1110. DOI: 10.1007/s00425-011-1359-2.
[5] DUTTA T, PAPA G, WANG E, et al.Characterization of lignin streams during bionic liquid-based pretreatment from grass, hardwood, and softwood[J]. ACS sustainable chemistry & engineering, 2018, 6(3): 3079-3090. DOI: 10.1021/acssuschemeng.7b02991.
[6] 候其东, 鞠美庭, 李维尊, 等. 基于离子液体的生物质组分分离研究进展[J]. 化工进展, 2016, 35(10): 3022-3031. DOI: 10.16085/j.issn.1000-6613.2016.10.003.
[7] FRANCISCO M, VAN DEN BRUINHORST A, KROON M C. New natural and renewable low transition temperature mixtures (LTTMs): screening as solvents for lignocellulosic biomass processing[J]. Green chemistry, 2012, 14(8): 2153-2157. DOI: 10.1039/c2gc35660k.
[8] SATLEWAL A, AGRAWAL R, BHAGIA S, et al.Natural deep eutectic solvents for lignocellulosic biomass pretreatment: Recent developments, challenges and novel opportunities[J]. Biotechnology advances, 2018, 36(8): 2032-2050. DOI: 10.1016/j.biotechadv.2018.08.009.
[9] FRANCISCO M, VAN DEN BRUINHORST A, KROON M C. Low-transition-temperature mixtures (LTTMs): a new generation of designer solvents[J]. Angewandte chemie-international edition, 2013, 52(11): 3074-3085. DOI: 10.1002/anie.201207548.
[10] ABBOTT A P, CAPPER G, DAVIES D L, et al.Preparation of novel, moisture-stable, Lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chains[J]. Chemical communications, 2001(19): 2010-2011. DOI: 10.1039/b106357j.
[11] SMITH E L, ABBOTT A P, RYDER K S.Deep eutectic solvents (DESs) and their applications[J]. Chemical reviews, 2014, 114(21): 11060-11082. DOI: 10.1021/cr300162p.
[12] ESPINO M, DE LOS ÁNGELES FERNÁNDEZ M, GOMEZ F J V, et al. Natural designer solvents for greening analytical chemistry[J]. TrAC trends in analytical chemistry, 2015, 76: 126-136. DOI: 10.1016/j.trac.2015.11.006.
[13] HARRIS R C.Physical properties of alcohol based deep eutectic solvents[D]. Leicester: University of Leicester, 2008.
[14] GARCÍA G, APARICIO S, ULLAH R, et al. Deep eutectic solvents: physicochemical properties and gas separation applications[J]. Energy & fuels, 2015, 29(4): 2616-2644. DOI: 10.1021/ef5028873.
[15] ZHANG Q H, DE OLIVEIRA VIGIER K, ROYER S, et al. Deep eutectic solvents: syntheses, properties and applications[J]. Chemical society reviews, 2012, 41(21): 7108-7146. DOI:10.1039/c2cs35178a.
[16] LOOW Y L, NEW E K, YANG G H, et al.Potential use of deep eutectic solvents to facilitate lignocellulosic biomass utilization and conversion[J]. Cellulose, 2017, 24(9): 3591-3618. DOI: 10.1007/s10570-017-1358-y.
[17] XING W R, XU G C, DONG J J, et al.Novel dihydrogen-bonding deep eutectic solvents: pretreatment of rice straw for butanol fermentation featuring enzyme recycling and high solvent yield[J]. Chemical engineering journal, 2018, 333: 712-720. DOI: 10.1016/j.cej.2017.09.176.
[18] YU Q, ZHANG A M, WANG W, et al.Deep eutectic solvents from hemicellulose-derived acids for the cellulosic ethanol refining of Akebia' herbal residues[J]. Bioresource technology, 2018, 247: 705-710. DOI: 10.1016/j.biortech.2017.09.159.
[19] HOU X D, LI A L, LIN K P, et al.Insight into the structure-function relationships of deep eutectic solvents during rice straw pretreatment[J]. Bioresource technology, 2018, 249: 261-267. DOI: 10.1016/j.biortech.2017.10.019.
[20] REN H W, CHEN C M, WANG Q H, et al.The properties of choline chloride-based deep eutectic solvents and their performance in the dissolution of cellulose[J]. BioResources, 2016, 11(2): 5435-5451. DOI: 10.15376/biores.11.2.5435-5451.
[21] GUO Z W, LING Z, WANG C, et al.Integration of facile deep eutectic solvents pretreatment for enhanced enzymatic hydrolysis and lignin valorization from industrial xylose residue[J]. Bioresource technology, 2018, 265: 334-339. DOI: 10.1016/j.biortech.2018.06.027.
[22] DE OLIVEIRA VIGIER K, CHATEL G, JÉRÔME F. Contribution of deep eutectic solvents for biomass processing: opportunities, challenges, and limitations[J]. ChemCatChem, 2015, 7(8): 1250-1260. DOI: 10.1002/cctc.201500134.
[23] KIM K H, DUTTA T, SUN J, et al.Biomass pretreatment using deep eutectic solvents from lignin derived phenols[J]. Green chemistry, 2018, 20(4): 809-815. DOI: 10.1039/C7GC03029K.
[24] XU G C, DING J C, HAN R Z, et al.Enhancing cellulose accessibility of corn stover by deep eutectic solvent pretreatment for butanol fermentation[J]. Bioresource technology, 2016, 203: 364-369. DOI: 10.1016/j.biortech.2015.11.002.
[25] LEU S Y, ZHU J.Substrate-related factors affecting enzymatic saccharification of lignocelluloses: our recent understanding[J]. Bioenergy research, 2013, 6(2): 405-415. DOI: 10.1007/s12155-012-9276-1.
[26] LYNAM J G, KUMAR N, WONG M J.Deep eutectic solvents' ability to solubilize lignin, cellulose, and hemicellulose; thermal stability; and density[J]. Bioresource technology, 2017, 238: 684-689. DOI: 10.1016/j.biortech.2017.04.079.
[27] BHAGIA S, LI H J, GAO X, et al.Flowthrough pretreatment with very dilute acid provides insights into high lignin contribution to biomass recalcitrance[J]. Biotechnology for biofuels, 2016, 9: 245. DOI: 10.1186/s13068-016-0660-5.
[28] DUMITRACHE A, TOLBERT A, NATZKE J, et al.Cellulose and lignin colocalization at the plant cell wall surface limits microbial hydrolysis of Populus biomass[J]. Green chemistry, 2017, 19(9): 2275-2285. DOI: 10.1039/C7GC00346C.
[29] RALPH J, LUNDQUIST K, BRUNOW G, et al.Lignins: Natural polymers from oxidative coupling of 4-hydroxy- phenylpropanoids[J]. Phytochemistry reviews, 2004, 3(1/2): 29-60. DOI: 10.1023/B:PHYT.0000047809.65444.a4.
[30] LIU Y Z, CHEN W S, XIA Q Q, et al.Efficient cleavage of lignin-carbohydrate complexes and ultrafast extraction of lignin oligomers from wood biomass by microwave-assisted treatment with deep eutectic solvent[J]. ChemSusChem, 2017, 10(8): 1692-1700. DOI: 10.1002/cssc.201601795.
[31] XIA Q Q, LIU Y Z, MENG J, et al.Multiple hydrogen bond coordination in three-constituent deep eutectic solvents enhances lignin fractionation from biomass[J]. Green chemistry, 2018, 20(12): 2711-2721. DOI: 10.1039/C8GC00900G.
[32] PROCENTESE A, RAGANATI F, OLIVIERI G, et al.Deep eutectic solvents pretreatment of agro-industrial food waste[J]. Biotechnology for biofuels, 2018, 11: 37. DOI: 10.1186/s13068-018-1034-y.
[33] ZHANG C W, XIA S Q, MA P S.Facile pretreatment of lignocellulosic biomass using deep eutectic solvents[J]. Bioresource technology, 2016, 219: 1-5. DOI: 10.1016/j.biortech.2016.07.026.
[34] SHEN X J, WEN J L, MEI Q Q, et al.Facile fractionation of lignocelluloses by biomass-derived deep eutectic solvent (DES) pretreatment for cellulose enzymatic hydrolysis and lignin valorization[J]. Green chemistry, 2019, 21(2): 275-283. DOI: 10.1039/c8gc03064b.
[35] GILLI P, PRETTO L, BERTOLASI V, et al.Predicting hydrogen-bond strengths from acid-base molecular properties. the pKa slide rule: toward the solution of a long-lasting problem[J]. Accounts of chemical research, 2008, 42(1): 33-44. DOI: 10.1021/ar800001k.
[36] DAI Y T, VAN SPRONSEN J, WITKAMP G J, et al.Natural deep eutectic solvents as new potential media for green technology[J]. Analytica chimica acta, 2013, 766: 61-68. DOI: 10.1016/j.aca.2012.12.019.
[37] ADLER E.Lignin chemistry—past, present and future[J]. Wood science and technology, 1977, 11(3): 169-218. DOI: 10.1007/BF00365615.
[38] LOOW Y L, WU T Y, YANG G H, et al.Deep eutectic solvent and inorganic salt pretreatment of lignocellulosic biomass for improving xylose recovery[J]. Bioresource technology, 2018, 249: 818-825. DOI: 10.1016/j.biortech. 2017.07.165.
[39] CVJETKO BUBALO M, ĆURKO N, TOMAŠEVIĆ M, et al. Green extraction of grape skin phenolics by using deep eutectic solvents[J]. Food chemistry, 2016, 200: 159-166. DOI: 10.1016/j.foodchem.2016.01.040.
[40] RAGAUSKAS A J, BECKHAM G T, BIDDY M J, et al.Lignin valorization: improving lignin processing in the biorefinery[J]. Science, 2014, 344(6185): 1246843. DOI: 10.1126/science.1246843.
[41] RENDERS T, VAN DEN BOSCH S, KOELEWIJN S F, et al. Lignin-first biomass fractionation: the advent of active stabilisation strategies[J]. Energy & environmental science, 2017, 10(7): 1551-1557. DOI: 10.1039/c7ee01298e.
[42] WU X J, FAN X T, XIE S J, et al.Solar energy-driven lignin-first approach to full utilization of lignocellulosic biomass under mild conditions[J]. Nature catalysis, 2018, 1(10): 772-780. DOI: 10.1038/s41929-018-0148-8.
[43] ALVAREZ-VASCO C, MA R S, QUINTERO M, et al.Unique low-molecular-weight lignin with high purity extracted from wood by deep eutectic solvents (DES): a source of lignin for valorization[J]. Green chemistry, 2016, 18(19): 5133-5141. DOI: 10.1039/c6gc01007e.
[44] ZHAO X B, ZHANG L H, LIU D H.Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose[J]. Biofuels, bioproducts and biorefining, 2012, 6(4): 465-482. DOI: 10.1002/bbb.1331.
[45] HUANG C, ZHAO C, LI H L, et al.Comparison of different pretreatments on the synergistic effect of cellulase and xylanase during the enzymatic hydrolysis of sugarcane bagasse[J]. RSC advances, 2018, 8(54): 30725-30731. DOI: 10.1039/C8RA05047C.
[46] FU D B, MAZZA G, TAMAKI Y.Lignin extraction from straw by ionic liquids and enzymatic hydrolysis of the cellulosic residues[J]. Journal of agricultural and food chemistry, 2010, 58(5): 2915-2922. DOI: 10.1021/jf903616y.
[47] HOU X D, LI N, ZONG M H.Facile and simple pretreatment of sugar cane bagasse without size reduction using renewable ionic liquids-water mixtures[J]. ACS sustainable chemistry & engineering, 2013, 1(5): 519-526. DOI: 10.1021/sc300172v.
[48] SUN R, SONG X L, SUN R C, et al.Effect of lignin content on enzymatic hydrolysis of furfural residues[J]. BioResources, 2011, 6(1): 317-328.
[49] 吴凯, 应文俊, 郑志锋, 等. 两种木质素对纤维素酶水解的影响机制[J]. 生物质化学工程, 2018, 52(2): 29-34. DOI: 10.3969/j.issn.1673-5854.2018.02.006.
[50] LIU W, CHEN W, HOU Q X, et al.Surface lignin change pertaining to the integrated process of dilute acid pre-extraction and mechanical refining of poplar wood chips and its impact on enzymatic hydrolysis[J]. Bioresource technology, 2017, 228: 125-132. DOI: 10.1016/j.biortech.2016.12.063.
[51] ZHU J Y, PAN X, ZALESNY R S JR. Pretreatment of woody biomass for biofuel production: energy efficiency, technologies, and recalcitrance[J]. Applied microbiology and biotechnology, 2010, 87(3): 847-857. DOI: 10.1007/s00253-010-2654-8.
[52] PAN X J.Role of functional groups in lignin inhibition of enzymatic hydrolysis of cellulose to glucose[J]. Journal of biobased materials and bioenergy, 2008, 2(1): 25-32. DOI: 10.1166/jbmb.2008.005.
[53] XIMENES E, KIM Y, MOSIER N, et al.Deactivation of cellulases by phenols[J]. Enzyme and microbial technology, 2011, 48(1): 54-60. DOI: 10.1016/j.enzmictec.2010.09.006.
[54] PROCENTESE A, JOHNSON E, ORR V, et al.Deep eutectic solvent pretreatment and subsequent saccharification of corncob[J]. Bioresource technology, 2015, 192: 31-36. DOI: 10.1016/j.biortech.2015.05.053.
[55] YOSHIDA M, LIU Y, UCHIDA S, et al.Effects of cellulose crystallinity, hemicellulose, and lignin on the enzymatic hydrolysis of Miscanthus sinensis to monosaccharides[J]. Bioscience, biotechnology, and biochemistry, 2008, 72(3): 805-810. DOI: 10.1271/bbb.70689.
[56] ZHANG J H, TANG M, VIIKARI L.Xylans inhibit enzymatic hydrolysis of lignocellulosic materials by cellulases[J]. Bioresource technology, 2012, 121: 8-12. DOI: 10.1016/j.biortech.2012.07.010.
[57] QING Q, WYMAN C E.Supplementation with xylanase and β-xylosidase to reduce xylo-oligomer and xylan inhibition of enzymatic hydrolysis of cellulose and pretreated corn stover[J]. Biotechnology for biofuels, 2011, 4: 18. DOI: 10.1186/1754-6834-4-18.
[58] ZHU J.Physical pretreatment-woody biomass size reduction-for forest biorefinery[J]. ACS symposium series, 2011, 1067: 89-107. DOI: 10.1021/bk-2011-1067.ch004.
[59] KARIMI K, TAHERZADEH M J.A critical review of analytical methods in pretreatment of lignocelluloses: Composition, imaging, and crystallinity[J]. Bioresource technology, 2016, 200: 1008-1018. DOI: 10.1016/j.biortech. 2015.11.022.
[60] LI H L, XIONG L, CHEN X F, et al.Enhanced enzymatic hydrolysis and acetone-butanol-ethanol fermentation of sugarcane bagasse by combined diluted acid with oxidate ammonolysis pretreatment[J]. Bioresource technology, 2017, 228: 257-263. DOI: 10.1016/j.biortech.2016.12.119.
文章导航

/