含天然气水合物沉积物的介电常数是水合物资源勘探开发过程中的重要参数。祁连山冻土区钻探表明水合物储集层多属致密型岩石类型,因此无法精确定位水合物储层及估算资源量,探地雷达及介电测井成为重要的备选方案。本文设计并建立含水合物岩心介电常数测试系统,对祁连山水合物钻探区DK-8井岩心样品进行实验。结果表明,含水合物砂岩样品的介电常数与外加电场的频率相关,即介电常数总趋势是随频率增高而减小,而在低频端出现高值,介电常数与频率呈现指数关系,含水合物砂岩的实验结果符合岩石介电常数规律。同一岩石样品,含水合物岩石的介电常数介于饱水岩石和干岩石介电常数之间。在气饱和条件下,同一岩石孔隙中较高介电常数的极化水转化为较低介电常数水合物导致含水合物岩石介电常数低于饱水岩石;但是水合物的介电常数高于空气的介电常数使含水合物岩石的介电常数高于同一块干岩石的介电常数,说明岩石中水合物增大了岩石的介电常数。含水合物样品在10 ~ 40 MHz频段存在频散特性;频率高于50 MHz,频散特性变弱,介电常数变化很小。
The dielectric constant of hydrate-bearing-sediments (HBS) is a significant parameter in the exploration and development of hydrate resources. From the drilling results, the HBS of the permafrost region in Qilian Mountain mainly belongs to consolidated rock type. So it is difficult to locate the hydrate reservoir and estimate resources accurately, Ground Penetrating Radar and dielectric well logging become an important option. In this paper, the dielectric constant test system of HBS was designed and established to test core samples from DK-8 well in the hydrate drilling area of Qilian Mountain. The results showed that the dielectric constant of sandstone samples is associated with the frequency of the external electric field, which means a general trend of dielectric constant decreases with frequency increasing. However, high dielectric constants showed in the low frequency, while dielectric constants showed the exponential relationship with the frequency. The experiment results of HBS conform to the law of dielectric constant in rocks. In the same rock sample, the dielectric constant of HBS was between that of water-saturated rock and dry rock. In the gas saturated circumstances, the polarised water with high dielectric constant was transformed into hydrate with low dielectric constant in the pores of the same rock, which led to the dielectric constant of HBS lower than that of water-saturated rock. However, the dielectric constant of hydrate was higher than that of air, so that the dielectric constant of HBS was higher than that of the same dry rock, which indicated that hydrate in rock increases the dielectric constant of rock. The HBS samples showed the dispersion characteristics in 10 ~ 40 MHz frequency. However, the dispersion characteristic weakens and the dielectric constant changes little when the frequency was above 50 MHz.
[1] SLOAN E D, KOH C A.Clathrate hydrates of natural gases[M]. 3rd ed. Boca Raton: Taylor & Francis Group, Chemical Rubber Company Press, 2007.
[2] 邹才能, 杨智, 何东博, 等. 常规-非常规天然气理论、技术及前景[J]. 石油勘探与开发, 2018, 45(4): 575-587.
[3] 祝有海, 张永勤, 文怀军, 等. 青海祁连山冻土区发现天然气水合物[J]. 地质学报, 2009, 83(11): 1762-1771. DOI: 10.3321/j.issn:0001-5717.2009.11.018.
[4] 李栋梁, 卢静生, 梁德青. 祁连山冻土区天然气水合物形成对岩芯电阻率及介电常数的影响[J]. 新能源进展, 2016, 4(3): 179-183. DOI: 10.3969/j.issn.2095-560X.2016.03.003.
[5] 杜炳锐, 白大为, 裴发根, 等. 水合物沉积物介电特性测量实验[J]. 石油地球物理勘探, 2019, 54(1): 118-126, 9. DOI: 10.13810/j.cnki.issn.1000-7210.2019.01.014.
[6] 祝有海, 张永勤, 文怀军, 等. 祁连山冻土区天然气水合物及其基本特征[J]. 地球学报, 2010, 31(1): 7-16.
[7] 卢振权, 饶竹, 祝有海, 等. 祁连山冻土区天然气水合物DK-8孔岩芯顶空气地球化学特征及其运移指示意义[J]. 地质学报, 2013, 87(8): 1167-1178. DOI: 10.3969/j.issn.0001-5717.2013.08.011.
[8] 郭星旺. 祁连山冻土区天然气水合物测井响应特征及评价[D]. 北京: 中国地质科学院, 2011.
[9] 方慧, 孙忠军, 徐明才, 等. 冻土区天然气水合物勘查技术研究主要进展与成果[J]. 物探与化探, 2017, 41(6): 991-997. DOI: 10.11720/wtyht.2017.6.01.
[10] 裴发根, 方慧, 仇根根, 等. 青海木里冻土区AMT探测天然气水合物正演模拟研究[J]. 物探与化探, 2017, 41(6): 1237-1247. DOI: 10.11720/wtyht.2017.6.33.
[11] 李栋梁, 樊栓狮. 微波作用下天然气水合物分解的研究及应用[J]. 化工进展, 2003, 22(3): 280-282. DOI: 10.3321/j.issn:1000-6613.2003.03.013.
[12] 梁德青, 何松, 李栋梁. 微波对天然气水合物形成/分解过程的影响[J]. 科学通报, 2008, 53(24): 3045-3050.
[13] WINTERS W J, PECHER I A, BOOTH J S, et al.Properties of samples containing natural gas hydrate from the JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well, determined using Gas Hydrate and Sediment Test Laboratory Instrument (GHASTLI)[J]. Bulletin of the geological survey of Canada, 1999(544): 241-250. DOI: 10.4095/210763.
[14] 孙中明. 沉积物中水合物饱和度及其相应力学特性的实验研究[D]. 青岛: 中国石油大学(华东), 2013.
[15] 孙中明, 刘昌岭, 赵仕俊, 等. 时域反射技术测量THF水合物体系含水量的实验研究[J]. 海洋地质前沿, 2012, 28(5): 64-70.
[16] 胡高伟, 业渝光, 刁少波, 等. 时域反射技术测量海洋沉积物含水量的研究[J]. 现代地质, 2010, 24(3): 622-626. DOI: 10.3969/j.issn.1000-8527.2010.03.029.
[17] ZAIN Z M, YANG J H, TOHIDI B, et al.Hydrate monitoring and warning system: a new approach For reducing gas hydrate risks[C]//SPE Europec/EAGE Annual Conference. Madrid, Spain: Society of Petroleum Engineers, 2005. DOI: 10.2118/94340-MS.
[18] TOHIDI B, CHAPOY A, YANG J H, et al.Developing hydrate monitoring and early warning systems[C]//Offshore Technology Conference. Houston, Texas, USA: Offshore Technology Conference, 2008. DOI: 10.4043/19247-MS.
[19] 张天华, AL-OFI S, AKBAR M.岩芯尺度的宽频介电常数频谱实验室测量设备的误差分析及其在物质测量中的应用(英文)[J]. 地球物理学进展, 2012, 27(2): 582-595. DOI: 10.6038/j.issn.1004-2903.2012.02.022.
[20] GOMAA M M.Saturation effect on electrical properties of hematitic sandstone in the audio frequency range using non-polarizing electrodes[J]. Geophysical prospecting, 2009,57(6): 1091-1100. DOI: 10.1111/j.1365-2478.2009.00797.x.
[21] JONSCHER A K.Dielectric relaxation in solids[J]. Journal of physics D: applied physics, 1999, 32(14): R57-R70. DOI: 10.1088/0022-3727/32/14/201.
[22] 尚作源, 冯启宁. 三种频带的岩石介电常数测量系统及测量结果[J]. 地球物理学报, 1995, 38(S1): 253-259.
[23] 唐炼, 韩有信, 张守谦, 等. 高频段岩石介电频散现象的实验研究[J]. 石油物探, 1995, 34(3): 109-113.
[24] TITOV K, KEMNA A, TARASOV A, et al.Induced polarization of unsaturated sands determined through time domain measurements[J]. Vadose zone journal, 2004, 3(4): 1160-1168. DOI:10.2136/vzj2004.1160.
[25] MARSHALL D J, MADDEN T R.Induced polarization, a study of its causes[J]. Geophysics, 1959, 24(4): 790-816. DOI: 10.1190/1.1438659.
[26] KNIGHT R, ABAD A.Rock/water interaction in dielectric properties: experiments with hydrophobic sandstones[J]. Geophysics, 1995, 60(2): 431-436. DOI: 10.1190/1.1443780.
[27] KNIGHT R, ENDRES A.A new concept in modeling the dielectric response of sandstones: defining a wetted rock and bulk water system[J]. Geophysics, 1990, 55(5): 586-594. DOI: 10.1190/1.1442870.
[28] CHELIDZE T L, GUEGUEN Y.Electrical spectroscopy of porous rocks: a review—I. Theoretical models[J]. Geophysical journal international, 1999, 137(1): 1-15. DOI: 10.1046/j.1365-246x.1999.00799.x.
[29] CHELIDZE T L, GUEGUEN Y, RUFFET C.Electrical spectroscopy of porous rocks: a review—II. Experimental results and interpretation[J]. Geophysical journal international, 1999, 137(1): 16-34. DOI: 10.1046/j.1365-246x.1999.00800.x.
[30] WU J J, MCLACHLAN D S.Percolation exponents and thresholds obtained from the nearly ideal continuum percolation system graphite-boron nitride[J]. Physical review B, 1997, 56(3): 1236-1248. DOI: 10.1103/PhysRevB.56.1236.