[1] MELCHAEVA O, VOYAME P, BASSETTO V C, et al.Electrochemical reduction of protic supercritical CO2 on copper electrodes[J]. Chemsuschem, 2017, 10(18): 3660-3670. DOI: 10.1002/cssc.201701205.
[2] GUO R H, LIU C F, WEI T C, et al.Electrochemical behavior of CO2 reduction on palladium nanoparticles: dependence of adsorbed CO on electrode potential[J]. Electrochemistry communications, 2017, 80: 24-28. DOI: 10.1016/j.elecom.2017.05.005.
[3] LUC W, COLLINS C, WANG S W, et al.Ag-Sn bimetallic catalyst with a core-shell structure for CO2 reduction[J]. Journal of the American chemical society, 2017, 139(5): 1885-1893. DOI: 10.1021/jacs.6b10435.
[4] WANG L W, JIA Y J, NIE R, et al.Ni-foam-supported and amine-functionalized TiO2 photocathode improved photoelectrocatalytic reduction of CO2 to methanol[J]. Journal of catalysis, 2017, 349: 1-7. DOI: 10.1016/j.jcat. 2017.01.013.
[5] CHO M, SONG J T, BACK S, et al.The role of adsorbed CN and Cl on an Au electrode for electrochemical CO2 reduction[J]. ACS catalysis, 2018, 8(2): 1178-1185. DOI: 10.1021/acscatal.7b03449.
[6] QIAO J L, LIU Y Y, HONG F, et al.A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon[J]. Chemical society reviews, 2014, 43(2): 631-675. DOI: 10.1039/C3CS60323G.
[7] 张现萍, 黄海燕, 靳红利, 等. 水溶液中电化学还原CO2的研究进展[J]. 化工进展, 2015, 34(12): 4139-4144, 4150. DOI: 10.16085/j.issn.1000-6613.2015.12.002.
[8] TORELLI D A, FRANCIS S A, CROMPTON C J, et al.Nickel-gallium-catalyzed electrochemical reduction of CO2 to highly reduced products at low overpotentials[J]. ACS catalysis, 2016, 6(3): 2100-2104. DOI: 10.1021/ acscatal.5b02888.
[9] MA M, DJANASHVILI K, SMITH W A.Controllable hydrocarbon formation from the electrochemical reduction of CO2 over Cu nanowire arrays[J]. Angewandte chemie international edition, 2016, 55(23): 6680-6684. DOI: 10.1002/anie.201601282.
[10] SINGH M R, KWON Y, LUM Y W, et al.Hydrolysis of electrolyte cations enhances the electrochemical reduction of CO2 over Ag and Cu[J]. Journal of the American chemical society, 2016, 138(39): 13006-13012. DOI: 10.1021/jacs.6b07612.
[11] RAZALI N A M, LEE K T, BHATIA S, et al. Heterogeneous catalysts for production of chemicals using carbon dioxide as raw material: a review[J]. Renewable and sustainable energy reviews, 2012, 16(7): 4951-4964. DOI: 10.1016/j.rser.2012.04.012.
[12] MISTRY H, VAARELA A S, BONIFACIO C S, et al.Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene[J]. Nature Communications, 2016, 7: 12945. DOI: 10.1038/ncomms12945.
[13] 赵毅, 钱新凤, 张自丽. 二氧化碳资源化技术分析及应用前景[J]. 科学技术与工程, 2014, 14(16): 175-183. DOI: 10.3969/j.issn.1671-1815.2014.16.032.
[14] 柳鹏, 张敏, 程发良. 电催化还原二氧化碳研究进展[J]. 东莞理工学院学报, 2016, 23(3): 65-68. DOI: 10.3969/j.issn.1009-0312.2016.03.014.
[15] CAI F, GAO D F, ZHOU H, et al.Electrochemical promotion of catalysis over Pd nanoparticles for CO2 reduction[J]. Chemical science, 2017, 8(4): 2569-2573. DOI: 10.1039/C6SC04966D.
[16] LI F W, CHEN L, KNOWLES G P, et al.Hierarchical mesoporous SnO2 nanosheets on carbon cloth: a robust and flexible electrocatalyst for CO2 reduction with high efficiency and selectivity[J]. Angewandte chemie international edition, 2017, 56(2): 505-509. DOI: 10.1002/anie.201608279.
[17] 熊卓, 赵永椿, 张军营, 等. Ti基CO2光催化还原及其影响因素研究进展[J]. 化工进展, 2013, 32(5): 1043-1052. DOI: 10.3969/j.issn.1000-6613.2013.05.014.
[18] WANG H, JIA J, SONG P F, et al.Efficient electrocatalytic reduction of CO2 by nitrogen-doped nanoporous carbon/carbon nanotube membranes: a step towards the electrochemical CO2 refinery[J]. Angewandte chemie international edition, 2017, 56(27): 7874-7852. DOI: 10.1002/anie.201703720.
[19] LI Q, FU J J, ZHU W L, et al.Tuning Sn-catalysis for electrochemical reduction of CO2 to CO via the Core/Shell Cu/SnO2 structure[J]. Journal of the American chemical society, 2017, 139(12): 4290-4293. DOI: 10.1021/jacs.7b00261.
[20] 范梦阳. 纳米氧化铜、氧化锡及其复合物(CuO-Cu2O、SnO2、SnO2-CuO)的制备及CO2电催化还原性能研究[D]. 上海: 东华大学, 2015.
[21] ZHENG T T, JIANG K, WANG H T.Recent advances in electrochemical CO2-to-CO conversion on heterogeneous catalysts[J]. Advanced materials, 2018, 30(48): 1802066. DOI: 10.1002/adma.201802066.
[22] KHODAKOV A Y, CHU W, FONGARLAND P.Advances in the development of novel cobalt Fischer-tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels[J]. Chemical reviews, 2007, 107(5): 1692-1744. DOI: 10.1021/cr050972v.
[23] LARRAZÁBAL G O, MARTÍN A J, MITCHELL S, et al. Enhanced reduction of CO2 to CO over Cu-in electro- catalysts: catalyst evolution is the key[J]. ACS catalysis, 2016, 6(9): 6265-6274. DOI: 10.1021/acscatal.6b02067.
[24] 黄鹏, 许江伟. 铁掺杂铜纳米花用于电化学还原CO2[J]. 江西化工, 2017(2): 79-82. DOI: 10.3969/j.issn. 1008-3103.2017.02.023.
[25] LIU S B, TAO H B, ZENG L, et al.Shape-dependent electrocatalytic reduction of CO2 to CO on triangular silver nanoplates[J]. Journal of the American chemical society, 2017, 139(6): 2160-2163. DOI: 10.1021/jacs.6b12103.
[26] LUAN C H, SHAO Y, LU Q, et al.High-performance carbon dioxide electrocatalytic reduction by easily fabricated large-scale silver nanowire arrays[J]. ACS applied materials & interfaces, 2018, 10(21): 17950-17956. DOI: 10.1021/acsami.8b03461.
[27] HUAN T N, RANJBAR N, ROUSSE G, et al.Electrochemical reduction of CO2 catalyzed by Fe-N-C Materials: a structure-selectivity study. ACS catalysis, 2017: 1520-1525. DOI: 10.1021/acscatal.6b03353.
[28] HORI Y, MURATA A, KIKUCHI K, et al.Electrochemical reduction of carbon dioxides to carbon monoxide at a gold electrode in aqueous potassium hydrogen carbonate[J]. Journal of the chemical society, chemical communications, 1987(10): 728-729. DOI: 10.1039/C39870000728.
[29] ZHAO S, JIN R, JIN R.Opportunities and challenges in CO2 reduction by gold-and silver-based electrocatalysts: From bulk metals to nanoparticles and atomically precise nanoclusters[J]. ACS energy letters, 2018, 3(2): 452-462. DOI: 10.1021/acsenergylett.7b01104.
[30] HE J F, JOHNSON N J J, HUANG A X, et al. Electrocatalytic alloys for CO2 reduction[J]. Chemsuschem, 2018, 11(1): 48-57. DOI: 10.1002/cssc.201701825.
[31] LEE H E, YANG K D, YOON S M, et al.Concave rhombic dodecahedral Au nanocatalyst with multiple high-index facets for CO2 reduction[J]. ACS Nano, 2015, 9(8): 8384-8393. DOI: 10.1021/acsnano.5b03065.
[32] CHEN Y H, LI C W, KANAN M W.Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles[J]. Journal of the American chemical society, 2012, 134(49): 19969-19972. DOI: 10.1021/ja309317u.
[33] FANG Y X, FLAKE J C.Electrochemical reduction of CO2 at functionalized Au electrodes[J]. Journal of the American chemical society, 2017, 139(9): 3399-3405. DOI: 10.1021/jacs.6b11023.
[34] WELCH A J, DUCHENE J S, TAGLIABUE G, et al.Nanoporous gold as a highly selective and active carbon dioxide reduction catalyst[J]. ACS applied energy materials, 2019, 2(1): 164-170. DOI: 10.1021/acsaem.8b01570.
[35] JIANG K, WANG H T.Electrocatalysis over graphene- defect-coordinated transition-metal single-atom catalysts[J]. Chem, 2018, 4(2): 194-195. DOI: 10.1016/j.chempr.2018.01.013.
[36] JIANG K, SIAHROSTAMI S, AKEY A J, et al.Transition-metal single atoms in a graphene shell as active centers for highly efficient artificial photosynthesis[J]. Chem, 2017, 3(6): 950-960. DOI: 10.1016/j.chempr.2017.09.014.
[37] YANG H B, HUNG S F, LIU S, et al.Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction[J]. Nature energy, 2018, 3(2): 140-147. DOI: 10.1038/s41560-017-0078-8.
[38] PAN Y, LIN R, CHEN Y J, et al.Design of single-atom Co-N5 catalytic site: a robust electrocatalyst for CO2 reduction with nearly 100% CO selectivity and remarkable stability[J]. Journal of the American chemical society, 2018, 140(12): 4218-4221. DOI: 10.1021/jacs.8b00814.
[39] HUAN T N, RANJBAR N, ROUSSE G, et al.Electrochemical reduction of CO2 catalyzed by Fe-N-C materials: a structure-selectivity study[J]. ACS catalysis, 2017, 7(3): 1520-1525. DOI: 10.1021/acscatal.6b03353.
[40] HOANG T T H, MA S C, GOLD J I, et al. Nanoporous copper films by additive-controlled electrodeposition: CO2 reduction catalysis[J]. ACS catalysis, 2017, 7(5): 3313-3321. DOI: 10.1021/acscatal.6b03613.
[41] HUANG Y, HANDOKO A D, HIRUNSIT P, et al.Electrochemical reduction of CO2 using copper single-crystal surfaces: effects of CO* coverage on the selective formation of ethylene[J]. ACS catalysis, 2017, 7(3): 1749-1756. DOI: 10.1021/acscatal.6b03147.
[42] 郭欣, 严乙铭, 孙克宁. Cu-Pt二元合金纳米晶体的制备及其对CO2的电还原性能[C]//. 中国化学会第29届学术年会摘要集——第12分会: 催化化学. 北京: 中国化学会, 2014: 3.
[43] KUMAR B, BRIAN J P, ATLA V, et al.New trends in the development of heterogeneous catalysts for electrochemical of CO2 reduction[J]. Catalysis today, 2016, 270: 19-30. DOI: 10.1016/j.cattod.2016.02.006.
[44] LI C W, KANAN M W.CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films[J]. Journal of the American chemical society, 2012, 134(17): 7231-7234. DOI: 10.1021/ja3010978.
[45] 殷中枢, 郭建伟, 王博. 二氧化碳电化学还原催化剂[J]. 科学技术与工程, 2013, 13(35): 10560-10570.