欢迎访问《新能源进展》官方网站!今天是

电化学催化还原二氧化碳研究进展

  • 赖洁 ,
  • 杨楠 ,
  • 袁健发 ,
  • 曾嘉瑛 ,
  • 马丽
展开
  • 暨南大学 化学与材料学院,广州 510632
赖 洁(1994-),女,硕士研究生,主要从事过渡金属电催化二氧化碳还原体系研究。马 丽(1985-),女,博士,副研究员,硕士生导师,主要从事均相和多相催化体系研究。

收稿日期: 2019-03-05

  修回日期: 2019-06-19

  网络出版日期: 2019-10-29

基金资助

广东省自然科学基金项目(2017A030310409); 暨南大学科研培育与创新基金研究项目(21617319)

Recent Progresses in Electrocatalytic Reduction of Carbon Dioxide: A Review

  • LAI Jie ,
  • YANG Nan ,
  • YUAN Jian-fa ,
  • ZENG Jia-ying ,
  • MA Li
Expand
  • College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China

Received date: 2019-03-05

  Revised date: 2019-06-19

  Online published: 2019-10-29

摘要

目前,能源和环境问题备受关注。一方面,大气层中二氧化碳的平衡受到破坏,其含量不断增加,严重影响了地球生态环境。另一方面,催化剂促进二氧化碳向能源分子的转化,不仅缓解了环境压力,也从一定程度上减轻了能源短缺问题。二氧化碳的资源化再利用在解决能源危机与环境问题方面意义深远,而产物选择性、电流效率以及催化剂的稳定性是目前研究电催化二氧化碳还原反应的主要难点。本文就异相电催化二氧化碳还原的研究现状进行了综述,对二氧化碳还原的电解质体系、主要产物、电极材料的选择和影响以及二氧化碳电化学还原面临的挑战及应对策略等进行了讨论。同时,对开发出成本低、稳定性好、效率高、选择性高的催化剂,尤其是直接电催化二氧化碳还原转化为醇和碳氢化合物的催化策略等进行了展望。

本文引用格式

赖洁 , 杨楠 , 袁健发 , 曾嘉瑛 , 马丽 . 电化学催化还原二氧化碳研究进展[J]. 新能源进展, 2019 , 7(5) : 429 -435 . DOI: 10.3969/j.issn.2095-560X.2019.05.007

Abstract

Nowadays, energy crisis and environmental issues attract a wide attention. On one hand, the concentration of carbon dioxide increases in atmosphere year by year which has already threaten the ecosystem on earth. On the other hand, converting carbon dioxide to fuel molecules with catalysts release not only environmental issues but also the energy crisis. The conversation and utilization of carbon dioxide by electrochemistry is a promising solution for energy crisis and environmental issues. However, the selectivity, current efficiency and stability of electrocatalysts are the key issues faced by the commercialization of carbon dioxide conversation. Based on the review of the research progress on heterogeneous electrochemical reduction of carbon dioxide, the relationships among the reduction products, faraday efficiency of reduction products and electrocatalysts, as well as the possible solutions to the problems faced currently by the electrocatalytic reduction of carbon dioxide were discussed. For the purpose of commercialization of carbon dioxide conversation and utilization, eletctrocatalysts with low-price, good stability, high efficiency and selectivity towards products should be developed. More importantly, researches should find a way to convert carbon dioxide to alcohol or hydrocarbon fuels efficiently.

参考文献

[1] MELCHAEVA O, VOYAME P, BASSETTO V C, et al.Electrochemical reduction of protic supercritical CO2 on copper electrodes[J]. Chemsuschem, 2017, 10(18): 3660-3670. DOI: 10.1002/cssc.201701205.
[2] GUO R H, LIU C F, WEI T C, et al.Electrochemical behavior of CO2 reduction on palladium nanoparticles: dependence of adsorbed CO on electrode potential[J]. Electrochemistry communications, 2017, 80: 24-28. DOI: 10.1016/j.elecom.2017.05.005.
[3] LUC W, COLLINS C, WANG S W, et al.Ag-Sn bimetallic catalyst with a core-shell structure for CO2 reduction[J]. Journal of the American chemical society, 2017, 139(5): 1885-1893. DOI: 10.1021/jacs.6b10435.
[4] WANG L W, JIA Y J, NIE R, et al.Ni-foam-supported and amine-functionalized TiO2 photocathode improved photoelectrocatalytic reduction of CO2 to methanol[J]. Journal of catalysis, 2017, 349: 1-7. DOI: 10.1016/j.jcat. 2017.01.013.
[5] CHO M, SONG J T, BACK S, et al.The role of adsorbed CN and Cl on an Au electrode for electrochemical CO2 reduction[J]. ACS catalysis, 2018, 8(2): 1178-1185. DOI: 10.1021/acscatal.7b03449.
[6] QIAO J L, LIU Y Y, HONG F, et al.A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon[J]. Chemical society reviews, 2014, 43(2): 631-675. DOI: 10.1039/C3CS60323G.
[7] 张现萍, 黄海燕, 靳红利, 等. 水溶液中电化学还原CO2的研究进展[J]. 化工进展, 2015, 34(12): 4139-4144, 4150. DOI: 10.16085/j.issn.1000-6613.2015.12.002.
[8] TORELLI D A, FRANCIS S A, CROMPTON C J, et al.Nickel-gallium-catalyzed electrochemical reduction of CO2 to highly reduced products at low overpotentials[J]. ACS catalysis, 2016, 6(3): 2100-2104. DOI: 10.1021/ acscatal.5b02888.
[9] MA M, DJANASHVILI K, SMITH W A.Controllable hydrocarbon formation from the electrochemical reduction of CO2 over Cu nanowire arrays[J]. Angewandte chemie international edition, 2016, 55(23): 6680-6684. DOI: 10.1002/anie.201601282.
[10] SINGH M R, KWON Y, LUM Y W, et al.Hydrolysis of electrolyte cations enhances the electrochemical reduction of CO2 over Ag and Cu[J]. Journal of the American chemical society, 2016, 138(39): 13006-13012. DOI: 10.1021/jacs.6b07612.
[11] RAZALI N A M, LEE K T, BHATIA S, et al. Heterogeneous catalysts for production of chemicals using carbon dioxide as raw material: a review[J]. Renewable and sustainable energy reviews, 2012, 16(7): 4951-4964. DOI: 10.1016/j.rser.2012.04.012.
[12] MISTRY H, VAARELA A S, BONIFACIO C S, et al.Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene[J]. Nature Communications, 2016, 7: 12945. DOI: 10.1038/ncomms12945.
[13] 赵毅, 钱新凤, 张自丽. 二氧化碳资源化技术分析及应用前景[J]. 科学技术与工程, 2014, 14(16): 175-183. DOI: 10.3969/j.issn.1671-1815.2014.16.032.
[14] 柳鹏, 张敏, 程发良. 电催化还原二氧化碳研究进展[J]. 东莞理工学院学报, 2016, 23(3): 65-68. DOI: 10.3969/j.issn.1009-0312.2016.03.014.
[15] CAI F, GAO D F, ZHOU H, et al.Electrochemical promotion of catalysis over Pd nanoparticles for CO2 reduction[J]. Chemical science, 2017, 8(4): 2569-2573. DOI: 10.1039/C6SC04966D.
[16] LI F W, CHEN L, KNOWLES G P, et al.Hierarchical mesoporous SnO2 nanosheets on carbon cloth: a robust and flexible electrocatalyst for CO2 reduction with high efficiency and selectivity[J]. Angewandte chemie international edition, 2017, 56(2): 505-509. DOI: 10.1002/anie.201608279.
[17] 熊卓, 赵永椿, 张军营, 等. Ti基CO2光催化还原及其影响因素研究进展[J]. 化工进展, 2013, 32(5): 1043-1052. DOI: 10.3969/j.issn.1000-6613.2013.05.014.
[18] WANG H, JIA J, SONG P F, et al.Efficient electrocatalytic reduction of CO2 by nitrogen-doped nanoporous carbon/carbon nanotube membranes: a step towards the electrochemical CO2 refinery[J]. Angewandte chemie international edition, 2017, 56(27): 7874-7852. DOI: 10.1002/anie.201703720.
[19] LI Q, FU J J, ZHU W L, et al.Tuning Sn-catalysis for electrochemical reduction of CO2 to CO via the Core/Shell Cu/SnO2 structure[J]. Journal of the American chemical society, 2017, 139(12): 4290-4293. DOI: 10.1021/jacs.7b00261.
[20] 范梦阳. 纳米氧化铜、氧化锡及其复合物(CuO-Cu2O、SnO2、SnO2-CuO)的制备及CO2电催化还原性能研究[D]. 上海: 东华大学, 2015.
[21] ZHENG T T, JIANG K, WANG H T.Recent advances in electrochemical CO2-to-CO conversion on heterogeneous catalysts[J]. Advanced materials, 2018, 30(48): 1802066. DOI: 10.1002/adma.201802066.
[22] KHODAKOV A Y, CHU W, FONGARLAND P.Advances in the development of novel cobalt Fischer-tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels[J]. Chemical reviews, 2007, 107(5): 1692-1744. DOI: 10.1021/cr050972v.
[23] LARRAZÁBAL G O, MARTÍN A J, MITCHELL S, et al. Enhanced reduction of CO2 to CO over Cu-in electro- catalysts: catalyst evolution is the key[J]. ACS catalysis, 2016, 6(9): 6265-6274. DOI: 10.1021/acscatal.6b02067.
[24] 黄鹏, 许江伟. 铁掺杂铜纳米花用于电化学还原CO2[J]. 江西化工, 2017(2): 79-82. DOI: 10.3969/j.issn. 1008-3103.2017.02.023.
[25] LIU S B, TAO H B, ZENG L, et al.Shape-dependent electrocatalytic reduction of CO2 to CO on triangular silver nanoplates[J]. Journal of the American chemical society, 2017, 139(6): 2160-2163. DOI: 10.1021/jacs.6b12103.
[26] LUAN C H, SHAO Y, LU Q, et al.High-performance carbon dioxide electrocatalytic reduction by easily fabricated large-scale silver nanowire arrays[J]. ACS applied materials & interfaces, 2018, 10(21): 17950-17956. DOI: 10.1021/acsami.8b03461.
[27] HUAN T N, RANJBAR N, ROUSSE G, et al.Electrochemical reduction of CO2 catalyzed by Fe-N-C Materials: a structure-selectivity study. ACS catalysis, 2017: 1520-1525. DOI: 10.1021/acscatal.6b03353.
[28] HORI Y, MURATA A, KIKUCHI K, et al.Electrochemical reduction of carbon dioxides to carbon monoxide at a gold electrode in aqueous potassium hydrogen carbonate[J]. Journal of the chemical society, chemical communications, 1987(10): 728-729. DOI: 10.1039/C39870000728.
[29] ZHAO S, JIN R, JIN R.Opportunities and challenges in CO2 reduction by gold-and silver-based electrocatalysts: From bulk metals to nanoparticles and atomically precise nanoclusters[J]. ACS energy letters, 2018, 3(2): 452-462. DOI: 10.1021/acsenergylett.7b01104.
[30] HE J F, JOHNSON N J J, HUANG A X, et al. Electrocatalytic alloys for CO2 reduction[J]. Chemsuschem, 2018, 11(1): 48-57. DOI: 10.1002/cssc.201701825.
[31] LEE H E, YANG K D, YOON S M, et al.Concave rhombic dodecahedral Au nanocatalyst with multiple high-index facets for CO2 reduction[J]. ACS Nano, 2015, 9(8): 8384-8393. DOI: 10.1021/acsnano.5b03065.
[32] CHEN Y H, LI C W, KANAN M W.Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles[J]. Journal of the American chemical society, 2012, 134(49): 19969-19972. DOI: 10.1021/ja309317u.
[33] FANG Y X, FLAKE J C.Electrochemical reduction of CO2 at functionalized Au electrodes[J]. Journal of the American chemical society, 2017, 139(9): 3399-3405. DOI: 10.1021/jacs.6b11023.
[34] WELCH A J, DUCHENE J S, TAGLIABUE G, et al.Nanoporous gold as a highly selective and active carbon dioxide reduction catalyst[J]. ACS applied energy materials, 2019, 2(1): 164-170. DOI: 10.1021/acsaem.8b01570.
[35] JIANG K, WANG H T.Electrocatalysis over graphene- defect-coordinated transition-metal single-atom catalysts[J]. Chem, 2018, 4(2): 194-195. DOI: 10.1016/j.chempr.2018.01.013.
[36] JIANG K, SIAHROSTAMI S, AKEY A J, et al.Transition-metal single atoms in a graphene shell as active centers for highly efficient artificial photosynthesis[J]. Chem, 2017, 3(6): 950-960. DOI: 10.1016/j.chempr.2017.09.014.
[37] YANG H B, HUNG S F, LIU S, et al.Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction[J]. Nature energy, 2018, 3(2): 140-147. DOI: 10.1038/s41560-017-0078-8.
[38] PAN Y, LIN R, CHEN Y J, et al.Design of single-atom Co-N5 catalytic site: a robust electrocatalyst for CO2 reduction with nearly 100% CO selectivity and remarkable stability[J]. Journal of the American chemical society, 2018, 140(12): 4218-4221. DOI: 10.1021/jacs.8b00814.
[39] HUAN T N, RANJBAR N, ROUSSE G, et al.Electrochemical reduction of CO2 catalyzed by Fe-N-C materials: a structure-selectivity study[J]. ACS catalysis, 2017, 7(3): 1520-1525. DOI: 10.1021/acscatal.6b03353.
[40] HOANG T T H, MA S C, GOLD J I, et al. Nanoporous copper films by additive-controlled electrodeposition: CO2 reduction catalysis[J]. ACS catalysis, 2017, 7(5): 3313-3321. DOI: 10.1021/acscatal.6b03613.
[41] HUANG Y, HANDOKO A D, HIRUNSIT P, et al.Electrochemical reduction of CO2 using copper single-crystal surfaces: effects of CO* coverage on the selective formation of ethylene[J]. ACS catalysis, 2017, 7(3): 1749-1756. DOI: 10.1021/acscatal.6b03147.
[42] 郭欣, 严乙铭, 孙克宁. Cu-Pt二元合金纳米晶体的制备及其对CO2的电还原性能[C]//. 中国化学会第29届学术年会摘要集——第12分会: 催化化学. 北京: 中国化学会, 2014: 3.
[43] KUMAR B, BRIAN J P, ATLA V, et al.New trends in the development of heterogeneous catalysts for electrochemical of CO2 reduction[J]. Catalysis today, 2016, 270: 19-30. DOI: 10.1016/j.cattod.2016.02.006.
[44] LI C W, KANAN M W.CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films[J]. Journal of the American chemical society, 2012, 134(17): 7231-7234. DOI: 10.1021/ja3010978.
[45] 殷中枢, 郭建伟, 王博. 二氧化碳电化学还原催化剂[J]. 科学技术与工程, 2013, 13(35): 10560-10570.
文章导航

/