为精确预测太阳能槽式集热器(parabolic trough collector, PTC)的传热损失,基于美国桑迪亚国家实验室(Sandia National Laboratory, SNL)、西班牙太阳能热发电站(Plataforma Solar de Almería, PSA)以及美国安柏瑞德航空航天大学(Embry-Riddle Aeronautical University, ERAU)的实测数据,对16个既有的PTC热损失模型的准确性和适用性进行了分析。结果表明,WANG等模型与SNL的实测数据吻合度最高;DICKES模型与ERAU的实测数据吻合度最高;PATNODE模型与PSA的实测数据吻合度最高。整体而言,在30 ~ 450℃ PTC载热介质工作温度范围内,PATNODE模型计算精度最高,适用性最好;直射辐射强度、入射角以及载热介质温度对集热器热损失的大小起着决定性的作用。
In order to accurately predict the heat loss of solar parabolic trough collector, the accuracy and adaptability of 16 existed heat loss models were analyzed based on the experimental data from the U.S. Sandia National Laboratory (SNL), Plataforma Solar de Almería in Spain (PSA) and Embry-Riddle Aeronautical University (ERAU) in United States. Results showed that, the DICKES model has the best applicability with experimental data from ERAU; the PATNODE model has the best applicability with experimental data from PSA and the model proposed by WANG et al. in 2017 has the best applicability with experimental data from SNL. In general, the PATNODE model has the highest accuracy and adaptability when with HTF operating temperature of 30-450°C, the direct radiation intensity, the incident angle and the temperature of the heat transfer fluid play extraordinarily important roles in the heat loss of the parabolic trough collector.
[1] DICKES R, LEMORT V, QUOILIN S.Semi-empirical correlation to model heat losses along solar parabolic trough collectors[C]//Proceedings of ECOS 2015-28th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems. Pau, France: ECOS, 2015.
[2] CAMACHO E F, BERENGUEL M.Control of solar energy systems[J]. IFAC proceedings volumes 2012, 45(15): 848-855. DOI: 10.3182/20120710-4-SG-2026.00181.
[3] CAMACHO E F, BERENGUEL M, GALLEGO A J.Control of thermal solar energy plants[J]. Journal of process control, 2014, 24(2): 332-340.
[4] CAMACHO E F, RUBIO F R, GUTIERREZ J A.Modelling and simulation of a solar power plant with a distributed collectors system[J]. IFAC proceedings volumes, 1988, 21(11): 321-325. DOI: 10.1016/S1474-6670(17)53762-3.
[5] CARMONA R.Analysis, modeling and control of a distributed solar collector field with a one-axis tracking system[D]. Spanish: University of Seville, 1985.
[6] ODEH S D, MORRISON G L, BEHNIA M.Thermal analysis of parabolic trough solar collectors for electric power generation[J]. Sydney, Australia: School of Mechanical and Manufacturing Engineering, University of New South Wales, 1996.
[7] PATNODE A M.Simulation and performance evaluation of parabolic trough solar power plants[D]. Wisconsin- Madison: University of Wisconsin-Madison, 2006.
[8] FELDHOFF J F, EICKHOFF M, KELLER L, et al.Status and first results of the DUKE Project - Component qualification of new receivers and collectors[J]. Energy procedia, 2014, 49: 1766-1776. DOI: 10.1016/j.egypro.2014.03.187.
[9] WANG R L, SUN J, HONG H, et al.An on-site test method for thermal and optical performances of parabolic-trough loop for utility-scale concentrating solar power plant[J]. Solar energy, 2017, 153: 142-152. DOI: 10.1016/j.solener.2017.05.053.
[10] GALLEGO A J, YEBRA L J, CAMACHO E F.Gain scheduling model predictive control of the new TCP-100 parabolic trough field[J]. IFAC-PapersOnLine, 2018, 51(2): 475-480. DOI: 10.1016/j.ifacol.2018.03.080.
[11] CIRRE C M, BERENGUEL M, VALENZUELA L, et al.Feedback linearization control for a distributed solar collector field[J]. Control engineering practice, 2007, 15(12): 1533-1544. DOI: 10.1016/j.conengprac.2007.03.002.
[12] VALENZUELA L, LÓPEZ-MARTÍN R, ZARZA E. Optical and thermal performance of large-size parabolic- trough solar collectors from outdoor experiments: a test method and a case study[J]. Energy, 2014, 70: 456-464. DOI:10.1016/j.energy.2014.04.016.
[13] FASQUELLE T.Modélisation et caractérisation expérimentale d’une boucle solaire cylindro-parabolique intégrant un stockage de type thermocline[D]. Français, Autre: Université de Perpignan, 2017.
[14] ODEH S D, MORRISON G L, BEHNIA M.Modelling of parabolic trough direct steam generation solar collectors[J]. Solar energy, 1998, 62(6): 395-406. DOI: 10.1016/S0038-092X(98)00031-0.
[15] LIPPKE F.The operating strategy and its impact on the performance of a 30 MWe SEGS plant[J]. Journal of solar energy engineering, 1997, 119(3): 201-207. DOI: 10.1115/1.2888019.
[16] BURKHOLDER F, KUTSCHER C.Heat loss testing of Schott’s 2008 PTR70 parabolic trough receiver[R]. Golden, Colorado: National Renewable Energy Laboratory, 2009.
[17] IRELAND M K.Dynamic modeling and control strategies for a Micro-CSP plant with thermal storage powered by the organic Rankine cycle[D]. Cambridge: MIT, 2014.
[18] PADILLA R V.Simplified methodology for designing parabolic trough solar power plants[D]. Ricardo Vasquez Padilla: University of South Florida, 2011.
[19] DUDLEY V E, KOLB G J, MAHONEY A R, et al.Test results: SEGS LS-2 solar collector[R]. USA: Sandia National Laboratories, 1994.
[20] ALFELLAG M A A. Modeling and experimental investigation of parabolic trough solar collector[D]. Daytona Beach: Embry-Riddle Aeronautical University, 2014.
[21] LIANG H B, YOU S J, ZHANG H.Comparison of different heat transfer models for parabolic trough solar collectors[J]. Applied energy, 2015, 148: 105-114. DOI: 10.1016/j.apenergy.2015.03.059.
[22] GARCÍA-VALLADARES O, VELÁZQUEZ N. Numerical simulation of parabolic trough solar collector: Improvement using counter flow concentric circular heat exchangers[J]. International journal of heat and mass transfer, 2009, 52(3-4): 597-609. DOI: 10.1016/j.ijheatmasstransfer.2008.08.004.
[23] 陈玉英. 槽式太阳能集热器传热模型及性能分析[J]. 土木建筑与环境工程, 2016, 38(4): 53-58. DOI: 10.11835/j.issn.1674-4764.2016.04.009
[24] FORRISTALL R.Heat transfer analysis and modeling of a parabolic trough solar receiver implemented in engineering equation solver[R]. Denver, Colo, USA: NREL Technical Reports, 2003.