欢迎访问《新能源进展》官方网站!今天是

Al-Si-Cu三元合金在太阳能高温相变蓄热装置中的数值分析

  • 袁芬 ,
  • 邱昊 ,
  • 芮明奇 ,
  • 蔡德程 ,
  • 关欣
展开
  • 上海理工大学 能源与动力工程学院,上海 200093
袁 芬(1993-),女,硕士研究生,主要从事强化传热研究。关 欣(1971-),女,副教授,主要从事强化传热、太阳能相关技术研究。

收稿日期: 2019-04-24

  修回日期: 2019-05-10

  网络出版日期: 2019-10-29

Numerical Analysis of Al-Si-Cu Ternary Alloy in Solar High Temperature Phase Change Heat Storage Device

  • YUAN Fen ,
  • QIU Hao ,
  • RUI Ming-qi ,
  • CAI De-cheng ,
  • GUAN Xin
Expand
  • School of energy and power engineering, University of Shanghai for Science and Technology, Shanghai 200093, China

Received date: 2019-04-24

  Revised date: 2019-05-10

  Online published: 2019-10-29

摘要

相变蓄热材料是太阳能热发电系统蓄热环节的关键。Al-Si-Cu三元合金作为相变蓄热材料具有性能稳定、衰减指数低、蓄热性能优良的特点。在实验的基础上,采用DSC、Hotdisk等方法对不同金属含量的Al-Si-Cu合金的热物性进行研究,同时对其封装材料进行了选择;基于不同形状蓄热单元,用Fluent软件进行模拟,最终选择了一个圆形相变蓄热单元和一个正六边形蓄热模块。结果表明:Al-Si-Cu三元合金相变蓄热材料集合了Al-Cu合金质量潜热大和Al-Si合金体积潜热大的优势;圆形结构蓄热单元换热性能最优;正六边形的模块能有效提高空间利用率,且更易于拼接,这对大型相变蓄热装置在工程中的应用具有重要意义。

本文引用格式

袁芬 , 邱昊 , 芮明奇 , 蔡德程 , 关欣 . Al-Si-Cu三元合金在太阳能高温相变蓄热装置中的数值分析[J]. 新能源进展, 2019 , 7(5) : 455 -463 . DOI: 10.3969/j.issn.2095-560X.2019.05.010

Abstract

Phase change materials are the key to heat storage in solar thermal power system. As a phase change heat storage material, Al-Si-Cu ternary alloy has the characteristics of stable performance, low attenuation index and excellent heat storage performance. On the basis of experiments, the thermal properties of Al-Si-Cu alloys with different metal contents were studied by DSC, Hotdisk and other methods, and the packaging materials were selected. Based on the thermal storage units with different shapes, Fluent software was used for simulation, and a circular phase-change thermal storage unit and a regular hexagon thermal storage module were finally selected. The results show that the phase-change heat storage material of Al-Si-Cu ternary alloy has the advantages of large mass latent heat of Al-Cu alloy and large volume latent heat of Al-Si alloy, and the presence of Cu can protect the oxidation of liquid aluminum alloy and reduce the corrosion of liquid aluminum alloy to the container. The heat transfer performance of the round structure heat storage unit is the best. The regular hexagonal module can effectively improve the space utilization rate and is easier to be assembled, which is of great significance to the application of large phase change heat storage device in engineering.

参考文献

[1] 赵明智, 张晓明, 宋士金, 等. 槽式太阳能热发电系统太阳倍数和蓄热时长的选取方法研究[J]. 太阳能, 2015(6): 50-54. DOI: 10.3969/j.issn.1003-0417.2015.06.013.
[2] PRAKASH P, VELMURUGAN V.Parameters influencing the productivity of solar stills-a review[J]. Renewable and sustainable energy reviews, 2015, 49: 585-609. DOI: 10.1016/j.rser.2015.04.136.
[3] LIU C Y, ZHOU Y M, LI D, et al.Numerical analysis on thermal performance of a PCM-filled double glazing roof[J]. Energy and buildings, 2016, 125: 267-275. DOI: 10.1016/j.enbuild.2016.05.002.
[4] NAVARRO L, DE GRACIA A, CASTELL A, et al.Experimental study of an active slab with PCM coupled to a solar air collector for heating purposes[J]. Energy and buildings, 2016, 128: 12-21. DOI: 10.1016/j.enbuild.2016.06.069.
[5] ZHAO B C, CHENG M S, LIU C, et al.Thermal performance and cost analysis of a multi-layered solid-PCM thermocline thermal energy storage for CSP tower plants[J]. Applied energy, 2016, 178: 784-799. DOI: 10.1016/j.apenergy.2016.06.034.
[6] SERALE G, GOIA F, PERINO M.Numerical model and simulation of a solar thermal collector with slurry Phase Change Material (PCM) as the heat transfer fluid[J]. Solar energy, 2016, 134: 429-444. DOI: 10.1016/j.solener.2016.04.030.
[7] DWIVEDI V K, TIWARI P, TIWARI S.Importance of phase change material (PCM) in solar thermal applications: a review[C]//Proceedings of 2016 International Conference on Emerging Trends in Electrical Electronics & Sustainable Energy Systems (ICETEESES). Sultanpur, India: IEEE, 2016: 42-45. DOI: 10.1109/ICETEESES.2016.7581349.
[8] 尹辉斌, 丁静, 杨晓西. 新型中高温蓄热技术及发展趋势[J]. 节能技术, 2014, 32(4): 295-299. DOI: 10.3969/j.issn.1002-6339.2014.04.002.
[9] 陈观生, 王波群, 张仁元, 等. 金属相变储热材料铝硅合金储热特性研究[J]. 材料研究与应用, 2010, 4(4): 255-259. DOI: 10.3969/j.issn.1673-9981.2010.04.005.
[10] ZOU Q C, JIE J C, SHEN Z F, et al.A new concept of Al-Si alloy with core-shell structure as phase change materials for thermal energy storage[J]. Materials letters, 2019, 237: 193-196. DOI: 10.1016/j.matlet.2018.11.103.
[11] GOKON N, YAMAGUCHI T, CHO H S, et al.Thermal storage/discharge performances of Cu-Si alloy for solar thermochemical process[J]. AIP conference proceedings, 2017, 1850(1): 100008. DOI: 10.1063/1.4984465.
[12] 崔富, 袁艳平, 赵君文, 等. Cu含量对高温相变材料Al-Cu合金热特性的影响[J]. 化工学报, 2017, 68(1): 112-118. DOI: 10.11949/j.issn.0438-1157.20160849.
[13] SHENG N, ZHU C Y, SAKAI H, et al.Synthesis of Al-25wt% Si@Al2O3@Cu microcapsules as phase change materials for high temperature thermal energy storage[J]. Solar energy materials and solar cells, 2019, 191: 141-147. DOI: 10.1016/j.solmat.2018.11.013.
[14] 许骏. 铝基合金相变储热材料成分优化研究[D]. 青岛: 中国石油大学(华东), 2015.
[15] FARKAS D, BIRCHENALL C E.New eutectic alloys and their heats of transformation[J]. Metallurgical transactions A, 1985, 16(3): 323-328. DOI: 10.1007/BF02814330.
[16] 李培, 路文江, 俞伟元, 等. 低熔点铝基复合钎料的制备及其性能研究[J]. 电焊机, 2009, 39(11): 22-24. DOI: 10.3969/j.issn.1001-2303.2009.11.005.
[17] 罗洪峰, 吴晶, 陈维平. 耐铝液腐蚀材料的研究与进展[J]. 材料导报, 2010, 24(13): 75-80.
[18] 刘靖, 王馨, 曾大本, 等. 高温相变材料Al-Si合金选择及其与金属容器相容性实验研究[J]. 太阳能学报, 2006, 27(1): 36-40. DOI: 10.3321/j.issn:0254-0096.2006. 01.007.
[19] 张仁元, 孙建强, 卢国辉. 共晶铝-镁-锌储能合金的热稳定性和液态腐蚀性[J]. 机械工程材料, 2006, 30(7): 11-14, 18. DOI: 10.3969/j.issn.1000-3738.2006.07.004.
[20] MA F, ZHANG P.Investigation on the performance of a high- temperature packed bed latent heat thermal energy storage system using Al-Si alloy[J]. Energy conversion and management, 2017, 150: 500-514. DOI: 10.1016/j.enconman.2017.08.040.
[21] 熊文. 铝基合金高温相变储热系统的数值模拟[D]. 武汉: 武汉理工大学, 2008.
文章导航

/