欢迎访问《新能源进展》官方网站!今天是

有机相变储能材料的研究进展

  • 杨磊 ,
  • 姚远 ,
  • 张冬冬 ,
  • 叶灿滔 ,
  • 龚宇烈
展开
  • 1. 中国科学院广州能源研究所,广州 510640;
    2. 中国科学院可再生能源重点实验室,广州 510640;
    3. 广东省新能源和可再生能源研究与应用重点实验室,广州 510640;
    4. 中国科学院大学,北京 100049;
    5. 即墨市热电厂,山东 青岛 266200
杨 磊(1993-),男,硕士研究生,主要从事制冷空调与热泵研究。龚宇烈(1978-),男,博士,研究员,主要从事地热能的能量转换技术研究。

收稿日期: 2019-04-25

  修回日期: 2019-05-30

  网络出版日期: 2019-10-29

基金资助

中国科学院战略性先导科技专项(A类)项目(XDA21050500)

Progress of Organic Phase Change Energy Storage Materials

  • YANG Lei ,
  • YAO Yuan ,
  • ZHANG Dong-dong ,
  • YE Can-tao ,
  • GONG Yu-lie
Expand
  • 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China;
    3. Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China;
    4. University of Chinese Academy of Sciences, Beijing 100049, China;
    5. Jimo Thermal Power Plant, Qing Dao 266200, Shandong, China

Received date: 2019-04-25

  Revised date: 2019-05-30

  Online published: 2019-10-29

摘要

有机相变储能材料(PCMs)具有储能密度高、腐蚀性小、性能稳定、毒性小、不易出现相分离和过冷现象等优点,成为目前蓄能技术领域主流应用材料之一。本文主要综述了各类有机PCMs的材料特性,针对其导热系数普遍较低的共性问题,介绍了通过添加高热导率材料和封装PCMs两种强化传热途径的最新研究成果,并浅谈了有机PCMs在建筑节能、太阳能利用及冷却电子设备等中低温储能技术中的实际应用情况。最后,总结了有机PCMs目前存在的一些瓶颈问题及未来研究的重点方向。

本文引用格式

杨磊 , 姚远 , 张冬冬 , 叶灿滔 , 龚宇烈 . 有机相变储能材料的研究进展[J]. 新能源进展, 2019 , 7(5) : 464 -472 . DOI: 10.3969/j.issn.2095-560X.2019.05.011

Abstract

Organic phase change materials (PCMs) with characteristics of high thermal storage density, non-corrosive, chemically stable, non-toxic, no phase segregation, and no or little supercooling, became one of the mainstream application materials in the field of energy storage technology. The material properties of organic PCMs were introduced in this paper. In view of the existing problems of organic PCMs low thermal conductivity, the latest research results of enhance the thermal conductivity of organic PSMs by incorporating high thermal conductivity additives and encapsulating PCMs technology were recommended. The application of the organic PCMs in low-temperature energy storage technology such as building energy saving, solar energy utilization and cooling electronic equipment was discussed. Finally, some research problems and development rends of the organic PCMs were summarized.

参考文献

[1] 吴淑英, 朱冬生, 汪南. 改善有机储热材料传热性能的研究进展及应用[J]. 现代化工, 2009, 29(10): 19-23. DOI: 10.3321/j.issn:0253-4320.2009.10.005.
[2] DU K, CALAUTIT J, WANG Z H, et al.A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges[J]. Applied energy, 2018, 220: 242-273. DOI: 10.1016/j.apenergy.2018.03.005.
[3] WAHID M A, HOSSEINI S E, HUSSEN H M, et al.An overview of phase change materials for construction architecture thermal management in hot and dry climate region[J]. Applied thermal engineering, 2017, 112: 1240-1259. DOI: 10.1016/j.applthermaleng.2016.07.032.
[4] KHAN M M A, SAIDUR R, AL-SULAIMAN F A. A review for phase change materials (PCMs) in solar absorption refrigeration systems[J]. Renewable and sustainable energy reviews, 2017, 76: 105-137. DOI: 10.1016/j.rser.2017.03.070.
[5] 李晓滨, 程远达, 赵旭东, 等. 相变材料在太阳能热水系统中的应用研究综述[J]. 太原理工大学学报, 2018, 49(5): 691-697. DOI: 10.16355/j.cnki.issn1007-9432tyut.2018.05.007.
[6] AGYENIM F, HEWITT N, EAMES P, et al.A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS)[J]. Renewable and sustainable energy reviews, 2010, 14(2): 615-628. DOI: 10.1016/j.rser.2009.10.015.
[7] 张向倩. 相变储能材料的研究进展与应用[J]. 现代化工, 2019, 39(4): 67-70. DOI: 10.16606/j.cnki.issn0253- 4320.2019.04.015.
[8] LIN Y X, JIA Y T, ALVA G, et al.Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage[J]. Renewable and sustainable energy reviews, 2018, 82: 2730-2742. DOI: 10.1016/j.rser.2017.10.002.
[9] ADINE H A, EL QARNIA H.Numerical analysis of the thermal behaviour of a shell-and-tube heat storage unit using phase change materials[J]. Applied mathematical modelling, 2009, 33(4): 2132-2144. DOI: 10.1016/j.apm.2008.05.016.
[10] COSTA M, BUDDHI D, OLIVA A.Numerical simulation of a latent heat thermal energy storage system with enhanced heat conduction[J]. Energy conversion and management, 1998, 39(3/4): 319-330. DOI: 10.1016/S0196-8904(96)00193-8.
[11] WANG Y, AMIRI A, VAFAI K.An experimental investigation of the melting process in a rectangular enclosure[J]. International journal of heat and mass transfer, 1999, 42(19): 3659-3672. DOI: 10.1016/S0017- 9310(99)00024-1.
[12] JANKOWSKI N R, MCCLUSKEY F P.A review of phase change materials for vehicle component thermal buffering[J]. Applied energy, 2014, 113: 1525-1561. DOI: 10.1016/j.apenergy.2013.08.026.
[13] ROZANNA D, CHUAH T G, SALMIAH A, et al.Fatty acids as phase change materials (PCMs) for thermal energy storage: a review[J]. International journal of green energy, 2005, 1(4): 495-513. DOI: 10.1081/GE-200038722.
[14] SARI A, KAYGUSUZ K.Thermal and heat transfer characteristics in a latent heat storage system using lauric acid[J]. Energy conversion and management, 2002, 43(18): 2493-2507. DOI: 10.1016/S0196-8904(01)00187-X.
[15] SARI A.Thermal reliability test of some fatty acids as PCMs used for solar thermal latent heat storage applications[J]. Energy conversion and management, 2003, 44(14): 2277-2287. DOI: 10.1016/S0196-8904(02)00251-0.
[16] HARISH S, OREJON D, TAKATA Y, et al.Thermal conductivity enhancement of lauric acid phase change nanocomposite with graphene nanoplatelets[J]. Applied thermal engineering, 2015, 80: 205-211. DOI: 10.1016/j.applthermaleng.2015.01.056.
[17] ABHAT A.Low temperature latent heat thermal energy storage: heat storage materials[J]. Solar energy, 1983, 30(4): 313-332. DOI: 10.1016/0038-092X(83)90186-X.
[18] SARI A, KAYGUSUZ K.Thermal performance of myristic acid as a phase change material for energy storage application[J]. Renewable energy, 2001, 24(2): 303-317. DOI: 10.1016/S0960-1481(00)00167-1.
[19] TANG F, CAO L, FANG G Y.Preparation and thermal properties of stearic acid/titanium dioxide composites as shape-stabilized phase change materials for building thermal energy storage[J]. Energy and buildings, 2014, 80: 352-357. DOI: 10.1016/j.enbuild.2014.05.030.
[20] YUAN Y P, ZHANG N, TAO W Q, et al.Fatty acids as phase change materials: a review[J]. Renewable and sustainable energy reviews, 2014, 29: 482-498. DOI: 10.1016/j.rser.2013.08.107.
[21] WANG Y, ZHANG Z F, ZHANG T, et al.Preparation and characterization of erythritol/graphene oxide shape-stable composites with improved thermal-physical property[J]. Chemistryselect, 2019, 4(4): 1149-1157. DOI: 10.1002/slct.201803178.
[22] KIM K B, CHOI K W, KIM Y J, et al.Feasibility study on a novel cooling technique using a phase change material in an automotive engine[J]. Energy, 2010, 35(1): 478-484. DOI: 10.1016/j.energy.2009.10.015.
[23] HAILLOT D, BAUER T, KRÖNER U, et al. Thermal analysis of phase change materials in the temperature range 120-150oC[J]. Thermochimica acta, 2011, 513(1/2): 49-59. DOI: 10.1016/j.tca.2010.11.011.
[24] SOLÉ A, NEUMANN H, NIEDERMAIER S, et al.Stability of sugar alcohols as PCM for thermal energy storage[J]. Solar energy materials and solar cells, 2014, 126: 125-134. DOI: 10.1016/j.solmat.2014.03.020.
[25] DA CUNHA J P, EAMES P. Thermal energy storage for low and medium temperature applications using phase change materials - a review[J]. Applied energy, 2016, 177: 227-238. DOI: 10.1016/j.apenergy.2016.05.097.
[26] GIL A, ORÓ E, MIRÓ L, et al.Experimental analysis of hydroquinone used as phase change material (PCM) to be applied in solar cooling refrigeration[J]. International journal of refrigeration, 2014, 39: 95-103. DOI: 10.1016/j.ijrefrig.2013.05.013.
[27] NIKOLIĆ R, MARINOVIĆ-CINCOVIĆ M, GADŽURIĆ S, et al. New materials for solar thermal storage - solid/liquid transitions in fatty acid esters[J]. Solar energy materials and solar cells, 2003, 79(3): 285-292. DOI: 10.1016/S0927-0248(02)00412-9.
[28] HIMRAN S, SUWONO A, MANSOORI G A.Characterization of alkanes and paraffin waxes for application as phase change energy storage medium[J]. Energy sources, 1994, 16(1): 117-128. DOI: 10.1080/00908319408909065.
[29] SARIER N, ONDER E.Organic phase change materials and their textile applications: an overview[J]. Thermochimica acta, 2012, 540: 7-60. DOI: 10.1016/j.tca.2012.04.013.
[30] FELDMAN D, SHAPIRO M M, BANU D, et al.Fatty acids and their mixtures as phase-change materials for thermal energy storage[J]. Solar energy materials, 1989, 18(3/4): 201-216. DOI: 10.1016/0165-1633(89)90054-3.
[31] SARI A, SARI H, ÖNAL A.Thermal properties and thermal reliability of eutectic mixtures of some fatty acids as latent heat storage materials[J]. Energy conversion and management, 2004, 45(3): 365-376. DOI: 10.1016/S0196-8904(03)00154-7.
[32] SARI A.Eutectic mixtures of some fatty acids for low temperature solar heating applications: thermal properties and thermal reliability[J]. Applied thermal engineering, 2005, 25(14/15): 2100-2107. DOI: 10.1016/j.applthermaleng. 2005.01.010.
[33] KAIZAWA A, MARUOKA N, KAWAI A, et al.Thermophysical and heat transfer properties of phase change material candidate for waste heat transportation system[J]. Heat and mass transfer, 2008, 44(7): 763-769. DOI: 10.1007/s00231-007-0311-2.
[34] SHUKLA A, BUDDHI D, SHARMA S D, et al.Accelerated thermal cycle test of erythritol for the latent heat storage application[C]//Proceedings of the EM4 Indore Workshop IEA ECES IA Annex. Indore, India: IEA, 2003: 21-24.
[35] XU S, ZOU L M, LING X L, et al.Preparation and thermal reliability of methyl palmitate/methyl stearate mixture as a novel composite phase change material[J]. Energy and buildings, 2014, 68: 372-375. DOI: 10.1016/j.enbuild.2013.09.038.
[36] 王大伟, 余荣升, 晏华, 等. 碳纤维/石蜡/膨胀石墨复合相变材料的制备及强化传热研究[J]. 材料导报, 2014, 28(24): 70-73. DOI: 10.11896/j.issn.1005-023X.2014.24.017.
[37] SARI A, KARAIPEKLI A.Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material[J]. Applied thermal engineering, 2007, 27(8/9): 1271-1277. DOI: 10.1016/j.applthermaleng.2006.11.004.
[38] 尹辉斌, 高学农, 丁静, 等. 热适应复合相变材料的制备与热性能[J]. 太阳能学报, 2011, 32(9): 1424-1430.
[39] ZHONG Y J, GUO Q G, LI S Z, et al.Heat transfer enhancement of paraffin wax using graphite foam for thermal energy storage[J]. Solar energy materials and solar cells, 2010, 94(6): 1011-1014. DOI: 10.1016/j.solmat.2010.02.004.
[40] NOMURA T, TABUCHI K, ZHU C Y, et al.High thermal conductivity phase change composite with percolating carbon fiber network[J]. Applied energy, 2015, 154: 678-685. DOI: 10.1016/j.apenergy.2015.05.042.
[41] TIAN B Q, YANG W B, LUO L J, et al.Synergistic enhancement of thermal conductivity for expanded graphite and carbon fiber in paraffin/EVA form-stable phase change materials[J]. Solar energy, 2016, 127: 48-55. DOI: 10.1016/j.solener.2016.01.011.
[42] WARZOHA R J, FLEISCHER A S.Effect of carbon nanotube interfacial geometry on thermal transport in solid-liquid phase change materials[J]. Applied energy, 2015, 154: 271-276. DOI: 10.1016/j.apenergy.2015.04.121.
[43] CHEN Z Q, GAO D Y, SHI J.Experimental and numerical study on melting of phase change materials in metal foams at pore scale[J]. International journal of heat and mass transfer, 2014, 72: 646-655. DOI: 10.1016/j.ijheatmasstransfer.2014.01.003.
[44] WANG Z C, ZHANG Z Q, JIA L, et al.Paraffin and paraffin/aluminum foam composite phase change material heat storage experimental study based on thermal management of Li-ion battery[J]. Applied thermal engineering, 2015, 78: 428-436. DOI: 10.1016/j.applthermaleng.2015.01.009.
[45] ŞAHAN N, FOIS M, PAKSOY H.Improving thermal conductivity phase change materials-A study of paraffin nanomagnetite composites[J]. Solar energy materials and solar cells, 2015, 137: 61-67. DOI: 10.1016/j.solmat. 2015.01.027.
[46] KHADIRAN T, HUSSEIN M Z, ZAINAL Z, et al.Encapsulation techniques for organic phase change materials as thermal energy storage medium: a review[J]. Solar energy materials and solar cells, 2015, 143: 78-98. DOI: 10.1016/j.solmat.2015.06.039.
[47] LV P Z, DING M Y, LIU C Z, et al.Experimental investigation on thermal properties and thermal performance enhancement of octadecanol/expanded perlite form stable phase change materials for efficient thermal energy storage[J]. Renewable energy, 2019, 131: 911-922. DOI: 10.1016/j.renene.2018.07.102.
[48] ALKAN C, SARI A.Fatty acid/poly(methyl methacrylate) (PMMA) blends as form-stable phase change materials for latent heat thermal energy storage[J]. Solar energy, 2008, 82(2): 118-124. DOI: 10.1016/j.solener.2007.07.001.
[49] HAWLADER M N A, UDDIN M S, KHIN M M. Microencapsulated PCM thermal-energy storage system[J]. Applied energy, 2003, 74(1/2): 195-202. DOI: 10.1016/S0306-2619(02)00146-0.
[50] 王大程, 谭淑娟, 徐国跃, 等. 硬脂酸/碳纳米管/聚甲基丙烯酸甲酯复合相变胶囊的制备与热性能研究[J]. 太阳能学报, 2019, 40(1): 24-29.
[51] SHARIFI N P, SHAIKH A A N, SAKULICH A R. Application of phase change materials in gypsum boards to meet building energy conservation goals[J]. Energy and buildings, 2017, 138: 455-467. DOI: 10.1016/j.enbuild. 2016.12.046.
[52] 张君瑛, 吴喜平, 于树轩, 等. 采用封装式相变材料的冷吊顶热工特性模拟[J]. 上海海事大学学报, 2010, 31(3): 40-46. DOI: 10.3969/j.issn.1672-9498.2010.03.008.
[53] XIA Y, ZHANG X S.Experimental research on a double- layer radiant floor system with phase change material under heating mode[J]. Applied thermal engineering, 2016, 96: 600-606. DOI: 10.1016/j.applthermaleng.2015.11.133.
[54] FAZILATI M A, ALEMRAJABI A A.Phase change material for enhancing solar water heater, an experimental approach[J]. Energy conversion and management, 2013, 71: 138-145. DOI: 10.1016/j.enconman.2013.03.034.
[55] SU W G, DARKWA J, KOKOGIANNAKIS G.Development of microencapsulated phase change material for solar thermal energy storage[J]. Applied thermal engineering, 2017, 112: 1205-1212. DOI: 10.1016/j. applthermaleng.2016.11.009.
[56] 刘玮, 周志华, 郭卫星, 等. 塑料球封装相变材料太阳能热水系统蓄热性能实验研究[J]. 建筑节能, 2018, 46(7): 125-127, 133. DOI: 10.3969/j.issn.1673-7237.2018.07.029.
[57] SHALABY S M, BEK M A.Experimental investigation of a novel indirect solar dryer implementing PCM as energy storage medium[J]. Energy conversion and management, 2014, 83: 1-8. DOI: 10.1016/j.enconman.2014.03.043.
[58] EL KHADRAOUI A, BOUADILA S, KOOLI S, et al.Thermal behavior of indirect solar dryer: nocturnal usage of solar air collector with PCM[J]. Journal of cleaner production, 2017, 148: 37-48. DOI: 10.1016/j.jclepro. 2017.01.149.
[59] JAWORSKI M.Thermal performance of heat spreader for electronics cooling with incorporated phase change material[J]. Applied thermal engineering, 2012, 35: 212-219. DOI: 10.1016/j.applthermaleng.2011.10.036.
[60] ALSHAER W G, NADA S A, RADY M A, et al.Thermal management of electronic devices using carbon foam and PCM/nano-composite[J]. International journal of thermal sciences, 2015, 89: 79-86. DOI: 10.1016/j. ijthermalsci.2014.10.012.
[61] 李昭, 叶光斗, 徐建军, 等. 聚乙二醇-聚乙烯醇相变储能纤维的制备及其性能[J]. 合成纤维, 2015, 44(7): 14-18.
[62] ZHAO L, LUO J, WANG H, et al.Self-assembly fabrication of microencapsulated n-octadecane with natural silk fibroin shell for thermal-regulating textiles[J]. Applied thermal engineering, 2016, 99: 495-501. DOI: 10.1016/j.applthermaleng.2015.12.111.
[63] PANDIYARAJAN V, PANDIAN M C, MALAN E, et al.Experimental investigation on heat recovery from diesel engine exhaust using finned shell and tube heat exchanger and thermal storage system[J]. Applied energy, 2011, 88(1): 77-87. DOI: 10.1016/j.apenergy.2010.07.023.
[64] 杨颖, 张伟, 董昭, 等. 冷藏车用新型复合相变蓄冷材料的制备及热性能研究[J]. 化工新型材料, 2013, 41(11): 41-43. DOI: 10.3969/j.issn.1006-3536.2013.11.014.
[65] CHENG W L, MEI B J, LIU Y N, et al.A novel household refrigerator with shape-stabilized PCM (Phase Change Material) heat storage condensers: an experimental investigation[J]. Energy, 2011, 36(10): 5797-5804. DOI: 10.1016/j.energy.2011.08.050.
文章导航

/