[1] 吴淑英, 朱冬生, 汪南. 改善有机储热材料传热性能的研究进展及应用[J]. 现代化工, 2009, 29(10): 19-23. DOI: 10.3321/j.issn:0253-4320.2009.10.005.
[2] DU K, CALAUTIT J, WANG Z H, et al.A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges[J]. Applied energy, 2018, 220: 242-273. DOI: 10.1016/j.apenergy.2018.03.005.
[3] WAHID M A, HOSSEINI S E, HUSSEN H M, et al.An overview of phase change materials for construction architecture thermal management in hot and dry climate region[J]. Applied thermal engineering, 2017, 112: 1240-1259. DOI: 10.1016/j.applthermaleng.2016.07.032.
[4] KHAN M M A, SAIDUR R, AL-SULAIMAN F A. A review for phase change materials (PCMs) in solar absorption refrigeration systems[J]. Renewable and sustainable energy reviews, 2017, 76: 105-137. DOI: 10.1016/j.rser.2017.03.070.
[5] 李晓滨, 程远达, 赵旭东, 等. 相变材料在太阳能热水系统中的应用研究综述[J]. 太原理工大学学报, 2018, 49(5): 691-697. DOI: 10.16355/j.cnki.issn1007-9432tyut.2018.05.007.
[6] AGYENIM F, HEWITT N, EAMES P, et al.A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS)[J]. Renewable and sustainable energy reviews, 2010, 14(2): 615-628. DOI: 10.1016/j.rser.2009.10.015.
[7] 张向倩. 相变储能材料的研究进展与应用[J]. 现代化工, 2019, 39(4): 67-70. DOI: 10.16606/j.cnki.issn0253- 4320.2019.04.015.
[8] LIN Y X, JIA Y T, ALVA G, et al.Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage[J]. Renewable and sustainable energy reviews, 2018, 82: 2730-2742. DOI: 10.1016/j.rser.2017.10.002.
[9] ADINE H A, EL QARNIA H.Numerical analysis of the thermal behaviour of a shell-and-tube heat storage unit using phase change materials[J]. Applied mathematical modelling, 2009, 33(4): 2132-2144. DOI: 10.1016/j.apm.2008.05.016.
[10] COSTA M, BUDDHI D, OLIVA A.Numerical simulation of a latent heat thermal energy storage system with enhanced heat conduction[J]. Energy conversion and management, 1998, 39(3/4): 319-330. DOI: 10.1016/S0196-8904(96)00193-8.
[11] WANG Y, AMIRI A, VAFAI K.An experimental investigation of the melting process in a rectangular enclosure[J]. International journal of heat and mass transfer, 1999, 42(19): 3659-3672. DOI: 10.1016/S0017- 9310(99)00024-1.
[12] JANKOWSKI N R, MCCLUSKEY F P.A review of phase change materials for vehicle component thermal buffering[J]. Applied energy, 2014, 113: 1525-1561. DOI: 10.1016/j.apenergy.2013.08.026.
[13] ROZANNA D, CHUAH T G, SALMIAH A, et al.Fatty acids as phase change materials (PCMs) for thermal energy storage: a review[J]. International journal of green energy, 2005, 1(4): 495-513. DOI: 10.1081/GE-200038722.
[14] SARI A, KAYGUSUZ K.Thermal and heat transfer characteristics in a latent heat storage system using lauric acid[J]. Energy conversion and management, 2002, 43(18): 2493-2507. DOI: 10.1016/S0196-8904(01)00187-X.
[15] SARI A.Thermal reliability test of some fatty acids as PCMs used for solar thermal latent heat storage applications[J]. Energy conversion and management, 2003, 44(14): 2277-2287. DOI: 10.1016/S0196-8904(02)00251-0.
[16] HARISH S, OREJON D, TAKATA Y, et al.Thermal conductivity enhancement of lauric acid phase change nanocomposite with graphene nanoplatelets[J]. Applied thermal engineering, 2015, 80: 205-211. DOI: 10.1016/j.applthermaleng.2015.01.056.
[17] ABHAT A.Low temperature latent heat thermal energy storage: heat storage materials[J]. Solar energy, 1983, 30(4): 313-332. DOI: 10.1016/0038-092X(83)90186-X.
[18] SARI A, KAYGUSUZ K.Thermal performance of myristic acid as a phase change material for energy storage application[J]. Renewable energy, 2001, 24(2): 303-317. DOI: 10.1016/S0960-1481(00)00167-1.
[19] TANG F, CAO L, FANG G Y.Preparation and thermal properties of stearic acid/titanium dioxide composites as shape-stabilized phase change materials for building thermal energy storage[J]. Energy and buildings, 2014, 80: 352-357. DOI: 10.1016/j.enbuild.2014.05.030.
[20] YUAN Y P, ZHANG N, TAO W Q, et al.Fatty acids as phase change materials: a review[J]. Renewable and sustainable energy reviews, 2014, 29: 482-498. DOI: 10.1016/j.rser.2013.08.107.
[21] WANG Y, ZHANG Z F, ZHANG T, et al.Preparation and characterization of erythritol/graphene oxide shape-stable composites with improved thermal-physical property[J]. Chemistryselect, 2019, 4(4): 1149-1157. DOI: 10.1002/slct.201803178.
[22] KIM K B, CHOI K W, KIM Y J, et al.Feasibility study on a novel cooling technique using a phase change material in an automotive engine[J]. Energy, 2010, 35(1): 478-484. DOI: 10.1016/j.energy.2009.10.015.
[23] HAILLOT D, BAUER T, KRÖNER U, et al. Thermal analysis of phase change materials in the temperature range 120-150oC[J]. Thermochimica acta, 2011, 513(1/2): 49-59. DOI: 10.1016/j.tca.2010.11.011.
[24] SOLÉ A, NEUMANN H, NIEDERMAIER S, et al.Stability of sugar alcohols as PCM for thermal energy storage[J]. Solar energy materials and solar cells, 2014, 126: 125-134. DOI: 10.1016/j.solmat.2014.03.020.
[25] DA CUNHA J P, EAMES P. Thermal energy storage for low and medium temperature applications using phase change materials - a review[J]. Applied energy, 2016, 177: 227-238. DOI: 10.1016/j.apenergy.2016.05.097.
[26] GIL A, ORÓ E, MIRÓ L, et al.Experimental analysis of hydroquinone used as phase change material (PCM) to be applied in solar cooling refrigeration[J]. International journal of refrigeration, 2014, 39: 95-103. DOI: 10.1016/j.ijrefrig.2013.05.013.
[27] NIKOLIĆ R, MARINOVIĆ-CINCOVIĆ M, GADŽURIĆ S, et al. New materials for solar thermal storage - solid/liquid transitions in fatty acid esters[J]. Solar energy materials and solar cells, 2003, 79(3): 285-292. DOI: 10.1016/S0927-0248(02)00412-9.
[28] HIMRAN S, SUWONO A, MANSOORI G A.Characterization of alkanes and paraffin waxes for application as phase change energy storage medium[J]. Energy sources, 1994, 16(1): 117-128. DOI: 10.1080/00908319408909065.
[29] SARIER N, ONDER E.Organic phase change materials and their textile applications: an overview[J]. Thermochimica acta, 2012, 540: 7-60. DOI: 10.1016/j.tca.2012.04.013.
[30] FELDMAN D, SHAPIRO M M, BANU D, et al.Fatty acids and their mixtures as phase-change materials for thermal energy storage[J]. Solar energy materials, 1989, 18(3/4): 201-216. DOI: 10.1016/0165-1633(89)90054-3.
[31] SARI A, SARI H, ÖNAL A.Thermal properties and thermal reliability of eutectic mixtures of some fatty acids as latent heat storage materials[J]. Energy conversion and management, 2004, 45(3): 365-376. DOI: 10.1016/S0196-8904(03)00154-7.
[32] SARI A.Eutectic mixtures of some fatty acids for low temperature solar heating applications: thermal properties and thermal reliability[J]. Applied thermal engineering, 2005, 25(14/15): 2100-2107. DOI: 10.1016/j.applthermaleng. 2005.01.010.
[33] KAIZAWA A, MARUOKA N, KAWAI A, et al.Thermophysical and heat transfer properties of phase change material candidate for waste heat transportation system[J]. Heat and mass transfer, 2008, 44(7): 763-769. DOI: 10.1007/s00231-007-0311-2.
[34] SHUKLA A, BUDDHI D, SHARMA S D, et al.Accelerated thermal cycle test of erythritol for the latent heat storage application[C]//Proceedings of the EM4 Indore Workshop IEA ECES IA Annex. Indore, India: IEA, 2003: 21-24.
[35] XU S, ZOU L M, LING X L, et al.Preparation and thermal reliability of methyl palmitate/methyl stearate mixture as a novel composite phase change material[J]. Energy and buildings, 2014, 68: 372-375. DOI: 10.1016/j.enbuild.2013.09.038.
[36] 王大伟, 余荣升, 晏华, 等. 碳纤维/石蜡/膨胀石墨复合相变材料的制备及强化传热研究[J]. 材料导报, 2014, 28(24): 70-73. DOI: 10.11896/j.issn.1005-023X.2014.24.017.
[37] SARI A, KARAIPEKLI A.Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material[J]. Applied thermal engineering, 2007, 27(8/9): 1271-1277. DOI: 10.1016/j.applthermaleng.2006.11.004.
[38] 尹辉斌, 高学农, 丁静, 等. 热适应复合相变材料的制备与热性能[J]. 太阳能学报, 2011, 32(9): 1424-1430.
[39] ZHONG Y J, GUO Q G, LI S Z, et al.Heat transfer enhancement of paraffin wax using graphite foam for thermal energy storage[J]. Solar energy materials and solar cells, 2010, 94(6): 1011-1014. DOI: 10.1016/j.solmat.2010.02.004.
[40] NOMURA T, TABUCHI K, ZHU C Y, et al.High thermal conductivity phase change composite with percolating carbon fiber network[J]. Applied energy, 2015, 154: 678-685. DOI: 10.1016/j.apenergy.2015.05.042.
[41] TIAN B Q, YANG W B, LUO L J, et al.Synergistic enhancement of thermal conductivity for expanded graphite and carbon fiber in paraffin/EVA form-stable phase change materials[J]. Solar energy, 2016, 127: 48-55. DOI: 10.1016/j.solener.2016.01.011.
[42] WARZOHA R J, FLEISCHER A S.Effect of carbon nanotube interfacial geometry on thermal transport in solid-liquid phase change materials[J]. Applied energy, 2015, 154: 271-276. DOI: 10.1016/j.apenergy.2015.04.121.
[43] CHEN Z Q, GAO D Y, SHI J.Experimental and numerical study on melting of phase change materials in metal foams at pore scale[J]. International journal of heat and mass transfer, 2014, 72: 646-655. DOI: 10.1016/j.ijheatmasstransfer.2014.01.003.
[44] WANG Z C, ZHANG Z Q, JIA L, et al.Paraffin and paraffin/aluminum foam composite phase change material heat storage experimental study based on thermal management of Li-ion battery[J]. Applied thermal engineering, 2015, 78: 428-436. DOI: 10.1016/j.applthermaleng.2015.01.009.
[45] ŞAHAN N, FOIS M, PAKSOY H.Improving thermal conductivity phase change materials-A study of paraffin nanomagnetite composites[J]. Solar energy materials and solar cells, 2015, 137: 61-67. DOI: 10.1016/j.solmat. 2015.01.027.
[46] KHADIRAN T, HUSSEIN M Z, ZAINAL Z, et al.Encapsulation techniques for organic phase change materials as thermal energy storage medium: a review[J]. Solar energy materials and solar cells, 2015, 143: 78-98. DOI: 10.1016/j.solmat.2015.06.039.
[47] LV P Z, DING M Y, LIU C Z, et al.Experimental investigation on thermal properties and thermal performance enhancement of octadecanol/expanded perlite form stable phase change materials for efficient thermal energy storage[J]. Renewable energy, 2019, 131: 911-922. DOI: 10.1016/j.renene.2018.07.102.
[48] ALKAN C, SARI A.Fatty acid/poly(methyl methacrylate) (PMMA) blends as form-stable phase change materials for latent heat thermal energy storage[J]. Solar energy, 2008, 82(2): 118-124. DOI: 10.1016/j.solener.2007.07.001.
[49] HAWLADER M N A, UDDIN M S, KHIN M M. Microencapsulated PCM thermal-energy storage system[J]. Applied energy, 2003, 74(1/2): 195-202. DOI: 10.1016/S0306-2619(02)00146-0.
[50] 王大程, 谭淑娟, 徐国跃, 等. 硬脂酸/碳纳米管/聚甲基丙烯酸甲酯复合相变胶囊的制备与热性能研究[J]. 太阳能学报, 2019, 40(1): 24-29.
[51] SHARIFI N P, SHAIKH A A N, SAKULICH A R. Application of phase change materials in gypsum boards to meet building energy conservation goals[J]. Energy and buildings, 2017, 138: 455-467. DOI: 10.1016/j.enbuild. 2016.12.046.
[52] 张君瑛, 吴喜平, 于树轩, 等. 采用封装式相变材料的冷吊顶热工特性模拟[J]. 上海海事大学学报, 2010, 31(3): 40-46. DOI: 10.3969/j.issn.1672-9498.2010.03.008.
[53] XIA Y, ZHANG X S.Experimental research on a double- layer radiant floor system with phase change material under heating mode[J]. Applied thermal engineering, 2016, 96: 600-606. DOI: 10.1016/j.applthermaleng.2015.11.133.
[54] FAZILATI M A, ALEMRAJABI A A.Phase change material for enhancing solar water heater, an experimental approach[J]. Energy conversion and management, 2013, 71: 138-145. DOI: 10.1016/j.enconman.2013.03.034.
[55] SU W G, DARKWA J, KOKOGIANNAKIS G.Development of microencapsulated phase change material for solar thermal energy storage[J]. Applied thermal engineering, 2017, 112: 1205-1212. DOI: 10.1016/j. applthermaleng.2016.11.009.
[56] 刘玮, 周志华, 郭卫星, 等. 塑料球封装相变材料太阳能热水系统蓄热性能实验研究[J]. 建筑节能, 2018, 46(7): 125-127, 133. DOI: 10.3969/j.issn.1673-7237.2018.07.029.
[57] SHALABY S M, BEK M A.Experimental investigation of a novel indirect solar dryer implementing PCM as energy storage medium[J]. Energy conversion and management, 2014, 83: 1-8. DOI: 10.1016/j.enconman.2014.03.043.
[58] EL KHADRAOUI A, BOUADILA S, KOOLI S, et al.Thermal behavior of indirect solar dryer: nocturnal usage of solar air collector with PCM[J]. Journal of cleaner production, 2017, 148: 37-48. DOI: 10.1016/j.jclepro. 2017.01.149.
[59] JAWORSKI M.Thermal performance of heat spreader for electronics cooling with incorporated phase change material[J]. Applied thermal engineering, 2012, 35: 212-219. DOI: 10.1016/j.applthermaleng.2011.10.036.
[60] ALSHAER W G, NADA S A, RADY M A, et al.Thermal management of electronic devices using carbon foam and PCM/nano-composite[J]. International journal of thermal sciences, 2015, 89: 79-86. DOI: 10.1016/j. ijthermalsci.2014.10.012.
[61] 李昭, 叶光斗, 徐建军, 等. 聚乙二醇-聚乙烯醇相变储能纤维的制备及其性能[J]. 合成纤维, 2015, 44(7): 14-18.
[62] ZHAO L, LUO J, WANG H, et al.Self-assembly fabrication of microencapsulated n-octadecane with natural silk fibroin shell for thermal-regulating textiles[J]. Applied thermal engineering, 2016, 99: 495-501. DOI: 10.1016/j.applthermaleng.2015.12.111.
[63] PANDIYARAJAN V, PANDIAN M C, MALAN E, et al.Experimental investigation on heat recovery from diesel engine exhaust using finned shell and tube heat exchanger and thermal storage system[J]. Applied energy, 2011, 88(1): 77-87. DOI: 10.1016/j.apenergy.2010.07.023.
[64] 杨颖, 张伟, 董昭, 等. 冷藏车用新型复合相变蓄冷材料的制备及热性能研究[J]. 化工新型材料, 2013, 41(11): 41-43. DOI: 10.3969/j.issn.1006-3536.2013.11.014.
[65] CHENG W L, MEI B J, LIU Y N, et al.A novel household refrigerator with shape-stabilized PCM (Phase Change Material) heat storage condensers: an experimental investigation[J]. Energy, 2011, 36(10): 5797-5804. DOI: 10.1016/j.energy.2011.08.050.