将金属有机骨架MIL-101(Cr)-NH2与CaCl2通过浸渍的方法复合得到MIL-101(Cr)-NH2/CaCl2热化学蓄热复合材料。采用X射线衍射分析仪(XRD)、扫描电子显微镜(SEM)、能谱分析(EDS)、全自动比表面积及孔径分析仪以及同步热分析仪(TG-DSC)等分析了复合材料的表观形貌、盐含量、比表面积和蓄热密度等参数。结果显示,复合材料的盐含量为49%,在30℃、32%湿度下的最大吸水量为0.54 g(H2O)/g(样品),蓄热密度达到了1 204 kJ/kg,并且在经历了17次吸附-解吸循环后,其蓄热密度仅降低了6.5%,表现出优异的循环稳定性,出色的吸附性能表明这一新型复合材料在太阳能蓄热领域具有广阔的应用前景。
The metal organic framework MIL-101(Cr)-NH2 and CaCl2 were combined by impregnation to obtain MIL-101(Cr)-NH2/CaCl2 composite. The morphology, salt content, specific surface area and heat storage density of the composite were obtained by X-ray diffraction analyzer (XRD), scanning electron microscopy (SEM), energy spectrum analysis (EDS), fully automatic specific surface area and pore size analyzer, and synchronous thermal analyzer (TG-DSC). Results showed that, the salt content of the composite was 49%, its maximum water uptake was 0.54 g (H2O)/g (sample) at 30°C and 32% relative humidity, and its heat storage density was 1 204 kJ/kg. Its heat storage density only reduced by 6.5% after 17 adsorption-desorption cycles, showing excellent cycle stability. The high adsorption performance indicated that this new composite has broad application prospects in solar energy heat storage applications.
[1] LEWIS N S. Research opportunities to advance solar energy utilization[J]. Science, 2016, 351(6271): aad1920. DOI: 10.1126/science.aad1920.
[2] PRASAD L, MUTHUKUMAR P.Design and optimization of lab-scale sensible heat storage prototype for solar thermal power plant application[J]. Solar energy, 2013, 97: 217-229. DOI: 10.1016/j.solener.2013.08.022.
[3] SHARMA A, TYAGI V V, CHEN C R, et al.Review on thermal energy storage with phase change materials and applications[J]. Renewable and sustainable energy reviews, 2009, 13(2): 318-345. DOI: 10.1016/j.rser.2007.10.005.
[4] AYDIN D, CASEY S P, RIFFAT S.The latest advancements on thermochemical heat storage systems[J]. Renewable and sustainable energy reviews, 2015, 41: 356-367. DOI: 10.1016/j.rser.2014.08.054.
[5] COURBON E, D'ANS P, PERMYAKOVA A, et al. A new composite sorbent based on SrBr2 and silica gel for solar energy storage application with high energy storage density and stability[J]. Applied energy, 2017, 190: 1184-1194. DOI: 10.1016/j.apenergy.2017.01.041.
[6] ARISTOV Y I, RESTUCCIA G, CACCIOLA G, et al.A family of new working materials for solid sorption air conditioning systems[J]. Applied thermal engineering, 2002, 22(2): 191-204. DOI: 10.1016/S1359-4311(01)00072-2.
[7] WHITING G, GRONDIN D, BENNICI S, et al.Heats of water sorption studies on zeolite-MgSO4 composites as potential thermochemical heat storage materials[J]. Solar energy materials and solar cells, 2013, 112: 112-119. DOI: 10.1016/j.solmat.2013.01.020.
[8] TOKAREV M, GORDEEVA L, ROMANNIKOV V, et al.New composite sorbent CaCl2 in mesopores for sorption cooling/heating[J]. International journal of thermal sciences, 2002, 41(5): 470-474. DOI: 10.1016/S1290-0729(02)01339-X.
[9] ARISTOV Y I, TOKAREV M M, RESTUCCIA G, et al.Selective water sorbents for multiple applications, 1. CaCl2 confined in mesopores of silica gel: Sorption properties[J]. Reaction kinetics and catalysis letters, 1996, 59(2): 325-333. DOI: 10.1007/BF02068130.
[10] EDDAOUDI M, KIM J, ROSI N, et al.Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage[J]. Science, 2002, 295(5554): 469-472. DOI: 10.1126/science.1067208.
[11] EHRENMANN J, HENNINGER S K, JANIAK C.Water adsorption characteristics of MIL-101 for heat-transformation applications of MOFs[J]. European journal of inorganic chemistry, 2011, 2011(4): 471-474. DOI: 10.1002/ejic.201001156.
[12] SHI W N, ZHU Y Q, SHEN C, et al.Water sorption properties of functionalized MIL-101(Cr)-X (X=-NH2, -SO3H, H, -CH3, -F) based composites as thermochemical heat storage materials[J]. Microporous and mesoporous materials, 2019, 285: 129-136. DOI: 10.1016/j.micromeso.2019.05.003.
[13] LIN Y C, KONG C L, CHEN L.Direct synthesis of amine-functionalized MIL-101(Cr) nanoparticles and application for CO2 capture[J]. RSC advances, 2012, 2(16): 6417-6419. DOI: 10.1039/c2ra20641b.
[14] CANIONI R, ROCH-MARCHAL C, SÉCHERESSE F, et al. Stable polyoxometalate insertion within the mesoporous metal organic framework MIL-100(Fe)[J]. Journal of materials chemistry, 2011, 21(4): 1226-1233. DOI: 10.1039/C0JM02381G.
[15] ZHANG W X, YING Y P, MA J, et al.Mixed matrix membranes incorporated with polydopamine-coated metal-organic framework for dehydration of ethylene glycol by pervaporation[J]. Journal of membrane science, 2017, 527: 8-17. DOI: 10.1016/j.memsci.2017.01.001.
[16] MEYNEN V, COOL P, VANSANT E F, et al.Deposition of vanadium silicalite-1 nanoparticles on SBA-15 materials. Structural and transport characteristics of SBA-VS-15[J]. Microporous and mesoporous materials, 2007, 99(1/2): 14-22. DOI: 10.1016/j.micromeso.2006.08.029.
[17] MAZAJ M, STEVENS W J J, LOGAR N Z, et al. Synthesis and structural investigations on aluminium-free Ti-Beta/SBA-15 composite[J]. Microporous and mesoporous materials, 2009, 117(1/2): 458-465. DOI: 10.1016/j.micromeso.2008.07.025.
[18] PERMYAKOVA A, WANG S J, COURBON E, et al.Design of salt-metal organic framework composites for seasonal heat storage applications[J]. Journal of materials chemistry A, 2017, 5(25): 12889-12898. DOI: 10.1039/C7TA03069J.