欢迎访问《新能源进展》官方网站!今天是
论文

溴化锂吸收式制冷技术研究进展

  • 杨磊 ,
  • 李华山 ,
  • 陆振能 ,
  • 陈高凯 ,
  • 雷炯 ,
  • 马伟斌 ,
  • 龚宇烈
展开
  • 1. 中国科学院广州能源研究所,广州 510640;
    2. 中国科学院可再生能源重点实验室,广州 510640;
    3. 广东省新能源和可再生能源研究开发与应用重点实验室,广州 510640;
    4. 中国科学院大学,北京 100049;
    5. 河南万江新能源集团有限公司,郑州 471700
杨 磊(1993-),男,博士研究生,主要从事制冷空调与热泵研究。

收稿日期: 2019-10-16

  网络出版日期: 2019-12-31

基金资助

中国科学院战略性先导科技专项(A类)(XDA21050500);河南省万江新能源院士工作站(GZZ2018040);郑州市第三批“智汇郑州•1125聚才计划”项目——“地热资源综合利用技术的开发与推广应用”

Progress of H2O/LiBr Absorption Refrigeration Technology

  • YANG Lei ,
  • LI Hua-shan ,
  • LU Zhen-neng ,
  • CHEN Gao-kai ,
  • LEI Jiong ,
  • MA Wei-bin ,
  • GONG Yu-lie
Expand
  • 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China;
    3. Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China;
    4. University of Chinese Academy of Sciences, Beijing 100049, China;
    5. Henan Wanjiang New Energy Group Co., Ltd., Zhengzhou 471700, China

Received date: 2019-10-16

  Online published: 2019-12-31

摘要

回顾了近十年来有关溴化锂吸收式制冷技术的发展及主要研究成果。H2O/LiBr作为一种广泛应用的吸收式制冷工质对,具有优良的热力学性能与环保特性,但存在结晶、腐蚀和循环性能低等问题。文章简述了醇类、盐混合物、离子液体及纳米颗粒等添加剂对H2O/LiBr溶液传热传质、防结晶及防腐蚀等性能的提升;介绍了关键部件吸收器和发生器的理论及实验研究现状;回顾了吸收式制冷系统循环优化的研究成果。通过归纳分析,总结溴化锂吸收式制冷技术存在的一些问题及未来发展趋势,为后续的研究提供参考。

本文引用格式

杨磊 , 李华山 , 陆振能 , 陈高凯 , 雷炯 , 马伟斌 , 龚宇烈 . 溴化锂吸收式制冷技术研究进展[J]. 新能源进展, 2019 , 7(6) : 532 -541 . DOI: 10.3969/j.issn.2095-560X.2019.06.009

Abstract

As a widely used absorption refrigeration working pair, H2O/LiBr has excellent thermodynamic properties and environmental friendly characteristics. Nevertheless, it still has problems of crystallization, corrosion and low coefficient of performance (COP). In this paper, the effects of additives such as alcohols, salt mixtures, ionic liquids and nanoparticles on the heat and mass transfer, anti-crystallization and anti-corrosion of H2O/LiBr were summarized. Besides, the theoretical and experimental research status of main components such as absorber and generator were introduced. Research results of the absorption refrigeration cycle optimization were also reviewed. Finally, the existing problems and development trends of lithium bromide absorption refrigeration technology were discussed, which may provide some references for the future study.

参考文献

[1] AMARIS C, VALLÈS M, BOUROUIS M. Vapour absorption enhancement using passive techniques for absorption cooling/ heating technologies: a review[J]. Applied energy, 2018, 231: 826-853. DOI: 10.1016/j.apenergy.2018.09.071.
[2] SUN J, FU L, ZHANG S G.Experimental study on vertical vapor absorption into LiBr solution with and without additive[J]. Applied thermal engineering, 2011, 31(14/15): 2850-2854. DOI: 10.1016/j.applthermaleng.2011.05.010.
[3] ZHANG H, YIN D Z, YOU S J, et al.Experimental investigation of heat and mass transfer in a LiBr-H2O solution falling film absorber on horizontal tubes: comprehensive effects of tube types and surfactants[J]. Applied thermal engineering, 2019, 146: 203-211. DOI: 10.1016/j.applthermaleng.2018.09.127.
[4] ASFAND F, STIRIBA Y, BOUROUIS M.Performance evaluation of membrane-based absorbers employing H2O/(LiBr + LiI + LiNO3 + LiCl) and H2O/(LiNO3 + KNO3 + NaNO3) as working pairs in absorption cooling systems[J]. Energy, 2016, 115: 781-790. DOI: 10.1016/j.energy.2016.08.103.
[5] ZAFARANI-MOATTAR M T, FROUZESH F. The study of vapor-liquid equilibria of 1-ethyl-3-methyl imidazolium chloride and 1-butyl-3-methyl imidazolium chloride in lithium bromide aqueous solutions and their corresponding binary systems at 298.15 K.[J]. Calphad, 2013, 40: 16-23. DOI: 10.1016/j.calphad.2012.11.002.
[6] ZAFARANI-MOATTAR M T, FROUZESH F, RAFIEE H R. The study of volumetric, acoustic and transport properties of ionic liquid, 1-butyl-3-methyl imidazolium chloride [Bmim][Cl] in aqueous lithium bromide solutions at T(298.15-318.15 K)[J]. Fluid phase equilibria, 2014, 376: 40-47. DOI: 10.1016/j.fluid.2014.05.028.
[7] RAFIEE H R, FROUZESH F.Study of apparent molar volumes for ionic liquid, 1-Ethyl-3-methyl imidazolium chloride in aqueous lithium nitrate, lithium bromide, and lithium chloride solutions at temperatures (298.15 to 318.15 K)[J]. Journal of chemical and engineering data, 2015, 60(10): 2958-2965. DOI: 10.1021/acs.jced.5b00329.
[8] RAFIEE H R, FROUZESH F.Vapor-liquid equilibria and volumetric properties for new working fluid ([C6H11N2][HSO4] + LiBr + H2O) and corresponding binary systems at different temperatures and ambient pressure[J]. Fluid phase equilibria, 2016, 429: 137-148. DOI: 10.1016/j.fluid.2016.08.036.
[9] KANG Y T, KIM H J, IL LEE K I. Heat and mass transfer enhancement of binary nanofluids for H2O/LiBr falling film absorption process[J]. International journal of refrigeration, 2008, 31(5): 850-856. DOI: 10.1016/j. ijrefrig.2007.10.008.
[10] KIM H, JEONG J, KANG Y T.Heat and mass transfer enhancement for falling film absorption process by SiO2 binary nanofluids[J]. International journal of refrigeration, 2012, 35(3): 645-651. DOI: 10.1016/j.ijrefrig.2011.11.018.
[11] 解国珍, 李国栋, 法晓明, 等. 纳米颗粒对溴化锂溶液发生温度的影响研究[J]. 制冷与空调, 2008, 8(S1): 80-82. DOI: 10.3969/j.issn.1009-8402.2008.z1.020.
[12] 解国珍, 褚伟鹏, 王刚, 等. 添加纳米粒子的溴化锂溶液传质特性[J]. 制冷学报, 2016, 37(4): 33-38. DOI: 10.3969/j.issn.0253-4339.2016.04.033.
[13] HAM J, KIM J, CHO H.Theoretical analysis of thermal performance in a plate type liquid heat exchanger using various nanofluids based on LiBr solution[J]. Applied thermal engineering, 2016, 108: 1020-1032. DOI: 10.1016/j.applthermaleng.2016.07.196.
[14] MORTAZAVI M, ISFAHANI R N, BIGHAM S, et al.Absorption characteristics of falling film LiBr (lithium bromide) solution over a finned structure[J]. Energy, 2015, 87: 270-278. DOI: 10.1016/j.energy.2015.04.074.
[15] WU J F, YI Z Y, CHEN Y P, et al.Enhanced heat and mass transfer in alternating structure of tubes and longitudinal trough mesh packing in lithium bromide solution absorber[J]. International journal of refrigeration, 2015, 53: 34-41. DOI: 10.1016/j.ijrefrig.2015.01.011.
[16] PALACIOS E, IZQUIERDO M, LIZARTE R, et al.Lithium bromide absorption machines: pressure drop and mass transfer in solutions conical sheets[J]. Energy conversion and management, 2009, 50(7): 1802-1809. DOI: 10.1016/j.enconman.2009.03.023.
[17] GUTIÉRREZ-URUETA G, RODRÍGUEZ P, VENEGAS M, et al. Experimental performances of a LiBr-water absorption facility equipped with adiabatic absorber[J]. International journal of refrigeration, 2011, 34(8): 1749-1759. DOI: 10.1016/j.ijrefrig.2011.07.014.
[18] ISFAHANI R N, MOGHADDAM S.Absorption characteristics of lithium bromide (LiBr) solution constrained by superhydrophobic nanofibrous structures[J]. International journal of heat and mass transfer, 2013, 63: 82-90. DOI: 10.1016/j.ijheatmasstransfer.2013.03.053.
[19] VENEGAS M, DE VEGA M, GARCÍA-HERNANDO N, et al. A simple model to predict the performance of a H2O-LiBr absorber operating with a microporous membrane[J]. Energy, 2016, 96: 383-393. DOI: 10.1016/j.energy.2015.12.059.
[20] VENEGAS M, DE VEGA M, GARCÍA-HERNANDO N. Parametric study of operating and design variables on the performance of a membrane-based absorber[J]. Applied thermal engineering, 2016, 98: 409-419. DOI: 10.1016/j.applthermaleng.2015.12.074.
[21] GARCÍA-HERNANDO N, DE VEGA M, VENEGAS M. Experimental characterisation of a novel adiabatic membrane-based micro-absorber using H2O-LiBr[J]. International journal of heat and mass transfer, 2019, 129: 1136-1143. DOI: 10.1016/j.ijheatmasstransfer.2018.10.046.
[22] LI W, WU X Y, LUO Z, et al.Falling water film evaporation on newly-designed enhanced tube bundles[J]. International journal of heat and mass transfer, 2011, 54(13/14): 2990-2997. DOI: 10.1016/j.ijheatmasstransfer.2011.02.052.
[23] MORTAZAVI M, SCHMID M, MOGHADDAM S.Compact and efficient generator for low grade solar and waste heat driven absorption systems[J]. Applied energy, 2017, 198: 173-179. DOI: 10.1016/j.apenergy.2017.04.054.
[24] HU T L, XIE X Y, JIANG Y.Design and experimental study of a plate-type falling-film generator for a LiBr/H2O absorption heat pump[J]. International journal of refrigeration, 2017, 74: 304-312. DOI: 10.1016/j.ijrefrig.2016.09.024.
[25] HU T L, XIE X Y, JIANG Y.A detachable plate falling film generator and condenser coupling using lithium bromide and water as working fluids[J]. International journal of refrigeration, 2019, 98: 120-128. DOI: 10.1016/j.ijrefrig.2018.10.007.
[26] 闫晓娜, 刘利华, 唐黎明. 套片蛇形管滴淋式发生器性能实验研究[J]. 低温工程, 2019(3): 46-52.
[27] LEE J H, KIM D H, KIM S M, et al.Heat transfer characteristics of a falling film generator for various configurations of heating tubes in an absorption chiller[J]. Applied thermal engineering, 2019, 148: 1407-1415. DOI: 10.1016/j.applthermaleng.2018.08.007.
[28] BIGHAM S, ISFAHANI R N, MOGHADDAM S.Direct molecular diffusion and micro-mixing for rapid dewatering of LiBr solution[J]. Applied thermal engineering, 2014, 64(1/2): 371-375. DOI: 10.1016/j.applthermaleng.2013.12.031.
[29] IBARRA-BAHENA J, DEHESA-CARRASCO U, ROMERO R J, et al.Experimental assessment of a hydrophobic membrane-based desorber/condenser with H2O/LiBr mixture for absorption systems[J]. Experimental thermal and fluid science, 2017, 88: 145-159. DOI: 10.1016/j.expthermflusci.2017.05.024.
[30] IBARRA-BAHENA J, RIVERA W, ROMERO R J, et al.Novel intermittent absorption cooling system based on membrane separation process[J]. Applied thermal engineering, 2018, 136: 718-729. DOI: 10.1016/j.applthermaleng.2018. 03.039.
[31] VENEGAS M, GARCÍA-HERNANDO N, DE VEGA M. A parametric analysis on the effect of design and operating variables in a membrane-based desorber[J]. International journal of refrigeration, 2019, 99: 47-58. DOI: 10.1016/j.ijrefrig.2018.11.043.
[32] GARCÍA-RIVERA E, CASTRO J, FARNÓS J, et al. Numerical and experimental investigation of a vertical LiBr falling film absorber considering wave regimes and in presence of mist flow[J]. International journal of thermal sciences, 2016, 109: 342-361. DOI: 10.1016/j.ijthermalsci. 2016.05.029.
[33] 张治, 操瑞兵, 陈亚平, 等. 叉排管束与M-W引流丝网交替吸收器性能研究[J]. 太阳能学报, 2017, 38(2): 393-399.
[34] CHEN J F, DAI Y J, WANG H B, et al.Experimental investigation on a novel air-cooled single effect LiBr-H2O absorption chiller with adiabatic flash evaporator and adiabatic absorber for residential application[J]. Solar energy, 2018, 159: 579-587. DOI: 10.1016/j.solener.2017.11.029.
[35] CHEN J F, DAI Y J, WANG R Z.Experimental and analytical study on an air-cooled single effect LiBr-H2O absorption chiller driven by evacuated glass tube solar collector for cooling application in residential buildings[J]. Solar energy, 2017, 151: 110-118. DOI: 10.1016/j.solener.2017.05.029.
[36] LI M, XU C M, HASSANIEN R H E, et al. Experimental investigation on the performance of a solar powered lithium bromide-water absorption cooling system[J]. International journal of refrigeration, 2016, 71: 46-59. DOI: 10.1016/j.ijrefrig.2016.07.023.
[37] GEBRESLASSIE B H, MEDRANO M, BOER D.Exergy analysis of multi-effect water-LiBr absorption systems: from half to triple effect[J]. Renewable energy, 2010, 35(8): 1773-1782. DOI: 10.1016/j.renene.2010.01.009.
[38] SHE X H, YIN Y G, XU M F, et al.A novel low-grade heat-driven absorption refrigeration system with LiCl-H2O and LiBr-H2O working pairs[J]. International journal of refrigeration, 2015, 58: 219-234. DOI: 10.1016/j.ijrefrig.2015.06.016.
[39] CHAHARTAGHI M, GOLMOHAMMADI H, SHOJAEI A F.Performance analysis and optimization of new double effect lithium bromide-water absorption chiller with series and parallel flows[J]. International journal of refrigeration, 2019, 97: 73-87. DOI: 10.1016/j.ijrefrig.2018.08.011.
[40] 胡磊, 王晓. 复合式三效溴化锂吸收式制冷循环特性分析[J]. 建筑热能通风空调, 2018, 37(4): 1-5. DOI: 10.3969/j.issn.1003-0344.2018.04.001.
[41] AZHAR, SIDDIQUI M A. Exergy analysis of single to triple effect lithium bromide-water vapour absorption cycles and optimization of the operating parameters[J]. Energy conversion and management, 2019, 180: 1225-1246. DOI: 10.1016/j.enconman.2018.11.062.
[42] XU Z Y, WANG R Z, XIA Z Z.A novel variable effect LiBr-water absorption refrigeration cycle[J]. Energy, 2013, 60: 457-463. DOI: 10.1016/j.energy.2013.08.033.
[43] XU Z Y, WANG R Z, WANG H B.Experimental evaluation of a variable effect LiBr-water absorption chiller designed for high-efficient solar cooling system[J]. International journal of refrigeration, 2015, 59: 135-143. DOI: 10.1016/j.ijrefrig.2015.07.019.
[44] XU Z Y, WANG R Z.Simulation of solar cooling system based on variable effect LiBr-water absorption chiller[J]. Renewable energy, 2017, 113: 907-914. DOI: 10.1016/j.renene.2017.06.069.
[45] LUBIS A, JEONG J, SAITO K, et al.Solar-assisted single-double-effect absorption chiller for use in Asian tropical climates[J]. Renewable energy, 2016, 99: 825-835. DOI: 10.1016/j.renene.2016.07.055.
[46] LUBIS A, JEONG J, GIANNETTI N, et al.Operation performance enhancement of single-double-effect absorption chiller[J]. Applied energy, 2018, 219: 299-311. DOI: 10.1016/j.apenergy.2018.03.046.
[47] WANG R Z, XU Z Y, PAN Q W, et al.Solar driven air conditioning and refrigeration systems corresponding to various heating source temperatures[J]. Applied energy, 2016, 169: 846-856. DOI: 10.1016/j.apenergy.2016.02.049.
文章导航

/