生物质与煤流化床催化气化制备燃气
收稿日期: 2013-06-18
修回日期: 2013-07-20
网络出版日期: 2013-10-31
基金资助
江苏大学第11批大学生科研立项资助项目(11A198)
Gas Production by Co-Gasification of Biomass and Coal with Catalyst
Received date: 2013-06-18
Revised date: 2013-07-20
Online published: 2013-10-31
基于单一流化床两步气化法,以煤作为热载体和发热体,水蒸气为气化剂,CaO为催化剂,在自行研制的流化床热态装置上对生物质(锯木)气化制备燃气进行了研究。探讨了温度和水蒸气与锯木比对燃气组分和低位热值的影响。在所研究的操作参数范围内,(H2 + CO)含量为67.58% ~ 74.9%,燃气低位热值为10719.09 kJ/Nm3 ~ 12002.44 kJ/Nm3。实验结果表明,含少量N2的中热值燃气可以被获得,H2和CO是燃气中最主要的两种气体。随着温度的升高,燃气中H2和CO含量增加,而CH4和CO2含量及燃气低位热值则呈现下降趋势。随着水蒸气与锯木比的增加,燃气中H2和CO2含量增加,而CH4和CO含量则相应的减小。
陈兆生 , 王立群 . 生物质与煤流化床催化气化制备燃气[J]. 新能源进展, 2013 , 1(2) : 174 -178 . DOI: 10.3969/j.issn.2095-560X.2013.02.009
In this study, thermochemical biomass gasification was performed on a self-design fluidized-bed reactor with pure steam as gasification media. A two-stage gasification process in the same fluidized bed reactor was adopted. The goal was to investigate the effects of temperature, steam to sawdust ratios on components and lower heating value of the product gas. Over the ranges of the experimental conditions used, H2 and CO contents in the product gas varies from 67.58% to 74.9%, and gas lower heating value between 10719.09 kJ/Nm3 and 12002.44 kJ/Nm3. The results showed that the top two in the product gas was H2 and CO. With an increase of temperature, H2 and CO contents increased, whilst CH4 and CO2 contents and gas lower heating value decreased. The contents of H2 and CO2 increase with the rise of steam to sawdust, whilst CH4 and CO content showed a decreasing trend.
Key words: biomass; coal; catalyst; gasification; gas
[1] Cohce M K, Rosen M A, Dincer I. Efficiency evaluation of a biomass gasification-based hydrogen production[J]. International Journal of Hydrogen Energy, 2011, 36(17): 11388-11398.
[2] Ruoppolo G, Ammendola P, Chirone R, et al. H2-rich syngas production by fluidized bed gasi?cation of biomass and plastic fuel[J]. Waste Management, 2012, 32(4): 724-732.
[3] Han L, Wang Q, Yang Y, et al. Hydrogen production via CaO sorption enhanced anaerobic gasification of sawdust in a bubbling fluidized bed[J]. International Journal of Hydrogen Energy, 2011, 36(8): 4820-4829.
[4] Bicáková O, Straka P. Production of hydrogen from renewable resources and its effectiveness[J]. International Journal of Hydrogen Energy, 2012, 37(16): 11563-11578.
[5] 王立群, 张俊如, 朱华东, 等. 在流化床气化炉中生物质与煤共气化的研究(Ⅰ)—以空气–水蒸汽为气化剂生产低热值燃气[J]. 太阳能学报, 2008, 29(2): 246-251.
[6] 李伟振. 生物质流化床气化制取富氢燃气试验系统设计与试验结果[D]. 镇江: 江苏大学能源与动力工程学院, 2009: 1-79.
[7] 顿玉环. 生物质与煤共气化制富氢燃气过程建模研究与机理分析[D]. 镇江: 江苏大学能源与动力工程学院, 2011: 1-92.
[8] 王立群, 李伟振, 宋旭, 等. 生物质与煤共气化制取氢气的试验[J]. 江苏大学学报: 自然科学版, 2009, 0(5): 496-500.
[9] 王立群, 宋旭, 周浩生, 等. 在流化床气化炉中生物质与煤共气化研究(Ⅱ)—以水蒸汽为气化剂生产中热值燃气[J]. 太阳能学报, 2008, 29(3): 355-359.
[10] 肖睿, 金保升, 周宏仓, 等. 高温气化剂加压喷动流化床煤气化试验研究[J]. 中国电机工程学报, 2005, 25(23): 100-105.
/
〈 |
|
〉 |