欢迎访问《新能源进展》官方网站!今天是
论文

糖基原料热解形成5-羟甲基糠醛的特性与机理综述

  • 张俊姣 ,
  • 张阳 ,
  • 蒋晓燕 ,
  • 陆强 ,
  • 董长青 ,
  • 杨勇平
展开
  • 华北电力大学生物质发电成套设备国家工程实验室,北京 102206
张俊姣(1974-),女,博士,讲师,主要从事生物质等固体燃料的高效热化学转化研究。

收稿日期: 2014-01-03

  修回日期: 2014-02-13

  网络出版日期: 2014-02-28

基金资助

国家科技支撑计划(2012BAD30B01);国家自然科学基金(51106052);中央高校基本业务费(12MS15);国家留学基金(201306735012)

Formation Characteristics and Mechanism of 5-Hydroxymethyl Furfural from Pyrolysis of Saccharide Materials

  • ZHANG Jun-jiao ,
  • ZHANG Yang ,
  • JIANG Xiao-yan ,
  • LU Qiang ,
  • DONG Chang-qing ,
  • YANG Yong-ping
Expand
  • National Engineering Laboratory for Biomass Power Generation Equipment, North China Electric Power University, Beijing 102206, China

Received date: 2014-01-03

  Revised date: 2014-02-13

  Online published: 2014-02-28

摘要

5-羟甲基糠醛(HMF)被认为是一种基于生物质资源的新型平台化合物,现阶段主要是通过糖基原料的水解进行制备。实际上,糖基原料热解也会形成HMF,鉴于热解技术具有反应迅速、工艺简单等优点,可望成为HMF的另一种制备方法。本文首先总结了不同糖基原料热解过程中HMF的生成特性,随后总结并分析了不同学者基于实验研究而提出的HMF生成机理,以及近年来通过密度泛函理论(DFT)计算方法所提出的HMF生成路径,最后指出了今后的研究方向以最终确定HMF的形成机理与途径。

本文引用格式

张俊姣 , 张阳 , 蒋晓燕 , 陆强 , 董长青 , 杨勇平 . 糖基原料热解形成5-羟甲基糠醛的特性与机理综述[J]. 新能源进展, 2014 , 2(1) : 7 -12 . DOI: 10.3969/j.issn.2095-560X.2014.01.002

Abstract

 5-Hydroxymethyl furfural (HMF) is known as a platform chemical of biomass materials. Currently, it is mainly produced through hydrolysis of certain saccharides. In fact, the HMF can also be produced from pyrolysis of saccharides. Since the pyrolysis technique has the advantages of fast speed and convenient processing, it might provide another way to produce HMF. This article firstly concludes the formation characteristics of the HMF from pyrolysis of different materials, and then summarizes the HMF formation mechanism based on the experimental studies, as well as the HMF formation pathways via the theoretical density functional theory (DFT) calculation. Finally, the paper points out the further research direction to determine the HMF formation mechanism and pathway.

参考文献

[1] Bridgwater A V. Review of fast pyrolysis of biomass and product upgrading[J]. Biomass and Bioenergy, 2012, 38: 68-94.

[2] 朱锡锋. 生物质热解液化技术研究与发展趋势[J]. 新能源进展, 2013, 1(1): 32-37.

[3] 王军, 张春鹏, 欧阳平凯. 5-羟甲基糠醛制备及应用的研究进展[J]. 化工进展, 2008, 27(5): 702-707.

[4] 姜楠, 齐崴, 黄仁亮, 等. 生物质制备5-羟甲基糠醛的研究进展[J]. 化工进展, 2011, 30(9): 1937-1945.

[5] Rosatella A A, Simeonov S P, Frade R F M, et al. 5-Hydroxymethylfurfural (HMF) as a building block platform: biological properties, synthesis and synthetic applications[J]. Green Chemistry, 2011, 13(4): 754-793.

[6] Vigier K O, Benguerba A, Barrault J, et al. Conversion of fructose and inulin to 5-hydroxymethylfurfural in sustainable betaine hydrochloride-based media[J]. Green Chemistry, 2012, 14(2): 285-289.

[7] 石宁, 刘琪英, 王铁军, 等. 葡萄糖催化脱水制取5-羟甲基糠醛研究进展[J]. 化工进展, 2012,31(4): 792-800.

[8] Ohara M, Takagaki A, Nishimura S, et al. Syntheses of 5-hydroxymethylfurfural and levoglucosan by selective dehydration of glucose using solid acid and base catalysts[J]. Applied Catalysis A: General, 2010, 383(1): 149-155.

[9] Jadhav A H, Kim H, Hwang I T. Efficient selective dehydration of fructose and sucrose into 5-hydroxymethylfurfural (HMF) using dicationic room temperature ionic liquids as a catalyst[J]. Catalysis Communications, 2012, 21: 96-103.

[10] Su Y, Brown H M, Huang X, et al. Single-step conversion of cellulose to 5-hydroxymethylfurfural (HMF), a versatile platform chemical[J]. Applied Catalysis A: General, 2009, 361(1/2): 117-122.

[11] Sanders E B, Goldsmith A I, Seeman J I. A model that distinguishes the pyrolysis of d-glucose, d-fructose, and sucrose from that of cellulose. Application to the understanding of cigarette smoke formation[J]. Journal of Analytical and Applied Pyrolysis, 2003, 66(1/2): 29-50.

[12] Gardiner D. The pyrolysis of some hexoses and derived di-, tri-, and poly-saccharides[J]. Journal of the Chemical Society C: Organic, 1966, 0: 1473-6.

[13] Schlotzhauer W S, Martin R M, Snook M E, et al. Pyrolytic studies on the contribution of tobacco leaf constituents to the formation of smoke catechols[J]. Journal of Agricultural and Food Chemistry, 1982, 30(2): 372-374.

[14] Ponder G R, Richards G N. Pyrolysis of inulin, glucose and fructose[J]. Carbohydrate research, 1993, 244(2): 341-359.

[15] 陆强, 廖航涛, 张阳, 等. 果糖低温快速热解制备5-羟甲基糠醛的机理研究[J]. 燃料化学学报, 2013, 41(9): 1070-1077.

[16] Patwardhan P R, Satrio J A, Brown R C, et al. Product distribution from fast pyrolysis of glucose-based carbohydrates[J]. Journal of Analytical and Applied Pyrolysis, 2009, 86(2): 323-330.

[17] Liao H T, Zhang Y, Lu Q, et al. Analytical Fast Pyrolysis of Glucose, Cellubiose and Cellulose: Comparison of the Pyrolytic Product Distribution[J]. Advanced Materials Research, 2013, 805: 186-190.

[18] Ohnishi A, Kato K. Thermal decomposition of tobacco cell-wall polysaccharides[J]. Beiträge zur Tabakforschung International, 1977, 9: 147-52.

[19] Dong C, Zhang Z, Lu Q, et al. Characteristics and mechanism study of analytical fast pyrolysis of poplar wood[J]. Energy Conversion and Management, 2012, 57: 49-59.

[20] Shen D K, Gu S. The mechanism for thermal decomposition of cellulose and its main products[J]. Bioresource Technology, 2009, 100(24): 6496-6504.

[21] Lu Q, Yang X, Dong C, et al. Influence of pyrolysis temperature and time on the cellulose fast pyrolysis products: Analytical Py-GC/MS study[J]. Journal of Analytical and Applied Pyrolysis, 2011, 92(2): 430-438.

[22] Kawamoto H, Saito S, Hatanaka W, et al. Catalytic pyrolysis of cellulose in sulfolane with some acidic catalysts[J]. Journal of Wood Science, 2007, 53(2): 127-13.

[23] Lu Q, Xiong W, Li W, et al. Catalytic pyrolysis of cellulose with sulfated metal oxides: A promising method for obtaining high yield of light furan compounds[J]. Bioresource Technology, 2009, 100(20): 4871-4876.

[24] Paine J B, Pithawalla Y B, Naworal J D. Carbohydrate pyrolysis mechanisms from isotopic labeling Part 4. The pyrolysis of D-glucose: The formation of furans[J]. Journal of Analytical and Applied Pyrolysis, 2008, 83(1): 37-63.

[25] Ponder G R, Richards G N. Pyrolysis of some 13C-labeled glucans: a mechanistic study[J]. Carbohydrate Research, 1993, 244(1): 27-47.

[26] Paine J B, Pithawalla Y B, Naworal J D. Carbohydrate pyrolysis mechanisms from isotopic labeling. Part 2. The pyrolysis of D-glucose: General disconnective analysis and the formation of C-1 and C-2 carbonyl compounds by electrocyclic fragmentation mechanisms[J]. Journal of Analytical and Applied Pyrolysis, 2008, 82(1): 10-41.

[27] Locas C P, Ylayan V A. Isotope labeling studies on the formation of 5-(Hydroxymethyl)-2-furaldehyde (HMF) from sucrose by Pyrolysis-GC/MS[J]. Journal of Agricultural and Food Chemistry, 2008, 56(15): 6717-6723.

[28] Moody W, Richards G N. Formation and equilibration of d-fructosides and 2-thio-d-fructosides in acidified dimethyl sulfoxide: synthetic and mechanistic aspects[J]. Carbohydrate Research, 1983, 124(2): 201-213.

[29] Jadhav H, Pedersen C M, Sølling T, et al. 3-Deoxy- glucosone is an Intermediate in the formation of Furfurals from D-Glucose[J]. Chemsuschem, 2011, 4(8): 1049-1051.

[30] Antal J, Mok W S, Richards G N. Mechanism of formation of 5-(hydroxymethyl)-2-furaldehyde from D-fructose and sucrose[J]. Carbohydrate Research, 1990, 199(1): 91-109.

[31] Huang J, Liu C, Wei S, et al. Density functional theory studies on pyrolysis mechanism of β-d-glucopyranose[J]. Journal of Molecular Structure: THEOCHEM, 2010, 958(1-3): 64-70.

[32] 黄金保, 童红, 李伟民, 等. 吡喃葡萄糖热解机理的量子化学理论研究[J]. 化学研究与应用, 2013, 25(4): 479-484.

[33] 郭秀娟. 生物质选择性热裂解机理研究[D]. 杭州:浙江大学, 2011.

[34] Assary R S, Redfern P C, Greeley J, et al. Mechanistic insights into the decomposition of fructose to hydroxy methyl furfural in neutral and acidic environments using high-level quantum chemical methods[J]. The Journal of Physical Chemistry B, 2011, 115(15): 4341-4349.

[35] Van Dam H, Kieboom A, Van Bekkum H. The conversion of fructose and glucose in acidic media: formation of hydroxymethylfurfural[J]. Starch-Stärke, 1986, 38(3): 95-101.

[36] Assary R S, Curtiss L A. Comparison of sugar molecule decomposition through glucose and fructose: A high-level quantum chemical Study[J]. Energy & Fuels, 2012, 26(2): 1344-1352.

文章导航

/