有机硅电解液添加剂对锂二次电池负极表面的改性研究
收稿日期: 2013-12-04
修回日期: 2014-02-16
网络出版日期: 2014-02-28
基金资助
中国科学院“百人计划”项目;国家自然科学基金(50973112/21202165);广州市科技计划项目(11A44061500)
Organosilicon Compounds as Electrolyte Additives for Surface Modification of Anode in Lithium Secondary Battery
Received date: 2013-12-04
Revised date: 2014-02-16
Online published: 2014-02-28
谢波 , 汪靖伦 , 麦永津 , 邵丹 , 孙铭浩 , 张灵志 . 有机硅电解液添加剂对锂二次电池负极表面的改性研究[J]. 新能源进展, 2014 , 2(1) : 49 -58 . DOI: 10.3969/j.issn.2095-560X.2014.01.009
The compatibility between electrode and electrolyte has a critical effect on the electrochemical performances of lithium secondary battery. The interface can be improved by using electrolyte additives to modify the surface of electrode, thus improving the electrochemical performances of the cells. The recent progress of organosilicon compounds as the modification agents for anodes (lithium metal, graphite and silicon anode) in lithium secondary batteries was summarized and introduced in this paper. The future development and application of organosilicon surface modification agents was prospected.
Key words: Lithium secondary battery; organosilicon; anode; surface modification
[1] E Etacheri V, Marom R, Elazari R, et al. Challenges in the development of advanced Li-ion batteries: a review[J]. Energy & Environmental Science, 2011, 4(9): 3243-3262.
[2] 吴宇平, 戴晓兵, 马军旗, 等. 锂离子电池: 应用与实践[M]. 化学工业出版社, 2004. 337-349.
[3] 李伟善. 储能锂离子电池关键材料研究进展[J]. 新能源进展, 2013, 1(1): 95-105.
[4] Aifantis K E, Hackney S A, Kumar R V. High energy density lithium batteries[M]. Wiley, 2010. 129-130.
[5] 黄可龙, 王兆翔, 刘素琴. 锂离子电池原理与关键技术[M]. 化学工业出版社, 2008. 130-131.
[6] 秦银平, 庄全超, 史月丽, 等. 锂离子电池电极界面特性研究方法[J]. 化学进展, 2011, 23(2/3): 391.
[7] Fu L, Liu H, Li C, et al. Surface modifications of electrode materials for lithium ion batteries[J]. Solid State Sci., 2006, 8(2): 113-128.
[8] Zhang S S. A review on electrolyte additives for lithium-ion batteries[J]. J. Power Sources, 2006, 162(2): 1379-1394.
[9] Yu X, Li H, Xu K, et al. Studies on the Formation and Stability of Solid Electrolyte Interphase on the Surface of Anode and Cathode of Lithium-Ion Batteries[J]. Meeting Abstracts, 2012, 9: 766-766.
[10] Rossi N A, Zhang Z, Schneider Y, et al. Synthesis and Characterization of Tetra-and Trisiloxane-Containing Oligo (ethylene glycol) s Highly Conducting Electrolytes for Lithium Batteries[J]. Chem. Mater., 2006, 18(5): 1289-1295.
[11] Zhang L Z, Zhang Z Z, Harring S, et al. Highly conductive trimethylsilyl oligo (ethylene oxide) electrolytes for energy storage applications[J]. J. Mater. Chem., 2008, 18(31): 3713-3717.
[12] Rossi N A, West R. Silicon-containing liquid polymer electrolytes for application in lithium ion batteries[J]. Polym. Int., 2009, 58(3): 267-272.
[13] Zhang L Z, Lyons L, Newhouse J, et al. Synthesis and characterization of alkylsilane ethers with oligo (ethylene oxide) substituents for safe electrolytes in lithium-ion batteries[J]. J. Mater. Chem., 2010, 20(38): 8224-8226.
[14] Jeschke S, Gentschev A-C, Wiemhöfer H-D. Disiloxanes with cyclic or non-cyclic carbamate moieties as electrolytes for lithium-ion batteries[J]. Chem. Commun., 2013, 49(12): 1190-1192.
[15] Qin X Y, Wang J L, Mai Y J, et al. Oligo (ethylene oxide)-functionalized trialkoxysilanes as novel electrolytes for high-voltage lithium-ion batteries[J]. Ionics, 2013, 19(11): 1567-1572.
[16] Neuhold S, Schroeder D J, Vaughey J T. Effect of surface preparation and R-group size on the stabilization of lithium metal anodes with silanes[J]. J. Power Sources, 2012, 206: 295-300.
[17] Cohen Y S, Cohen Y, Aurbach D. Micromorphological studies of lithium electrodes in alkyl carbonate solutions using in situ atomic force microscopy[J]. The Journal of Physical Chemistry B, 2000, 104(51): 12282-12291.
[18] Lopez C M, Vaughey J T, Dees D W. Morphological Transitions on Lithium Metal Anodes[J]. J. Electrochem. Soc., 2009, 156(9): A726-A729.
[19] Shimada Y, Okita K, Okuno Y, et al. Electrochemical Lithium Deposition-dissolution Reaction of a Ti Modified Multi-layered Solid Electrolyte Sheet[J]. Electrochemistry, 2010, 78(5): 427-430.
[20] Teyssot A, Belhomme C, Bouchet R, et al. Inter-electrode in situ concentration cartography in lithium/polymer electrolyte/lithium cells[J]. J. Electroanal. Chem., 2005, 584(1): 70-74.
[21] Lane G H, Best A S, MacFarlane D R, et al. An Azo-Spiro Mixed Ionic Liquid Electrolyte for Lithium Metal- LiFePO4 Batteries[J]. J. Electrochem. Soc., 2010, 157(7): A876-A884.
[22] Bhattacharyya R, Key B, Chen H L, et al. In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries[J]. Nature Materials, 2010, 9(6): 504-510.
[23] Naudin C, Bruneel J, Chami M, et al. Characterization of the lithium surface by infrared and Raman spectroscopies[J]. J. Power Sources, 2003, 124(2): 518-525.
[24] Mogi R, Inaba M, Iriyama Y, et al. Study of the decomposition of propylene carbonate on lithium metal surface by pyrolysis-gas chromatography-mass spectroscopy[J]. Langmuir., 2003, 19(3): 814-821.
[25] Aurbach D. Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries[J]. J. Power Sources, 2000, 89(2): 206-218.
[26] Zaban A, Zinigrad E, Aurbach D. Impedance spectroscopy of Li electrodes. 4. A general simple model of the Li-solution interphase in polar aprotic systems[J]. The Journal of Physical Chemistry, 1996, 100(8): 3089-3101.
[27] Ota H, Sakata Y, Otake Y, et al. Structural and functional analysis of surface film on Li anode in vinylene carbonate-containing electrolyte[J]. J. Electrochem. Soc., 2004, 151(11): A1778-A1788.
[28] Choi N S, Lee Y M, Seol W, et al. Protective coating of lithium metal electrode for interfacial enhancement with gel polymer electrolyte[J]. Solid State Ionics, 2004,
172(1): 19-24.
[29] Zinigrad E, Levi E, Teller H, et al. Investigation of lithium electrodeposits formed in practical rechargeable Li-LixMnO2 batteries based on LiAsF6/1,3-dioxolane solutions[J]. J. Electrochem. Soc., 2004, 151(1): A111-A118.
[30] Yang L, Smith C, Patrissi C, et al. Surface reactions and performance of non-aqueous electrolytes with lithium metal anodes[J]. J. Power Sources, 2008, 185(2): 1359-1366.
[31] Hair M, Tripp C. Alkylchlorosilane reactions at the silica surface[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995, 105(1): 95-103.
[32] Umeda G A, Menke E, Richard M, et al. Protection of lithium metal surfaces using tetraethoxysilane[J]. J. Mater. Chem., 2011, 21(5): 1593.
[33] Marchioni F, Star K, Menke E, et al. Protection of lithium metal surfaces using chlorosilanes[J]. Langmuir., 2007, 23(23): 11597-11602.
[34] Thompson R S, Schroeder D J, López C M, et al. Stabilization of lithium metal anodes using silane-based coatings[J]. Electrochem. Commun., 2011, 13(12): 1369-1372.
[35] Fu L J, Liu H, Li C, et al. Surface modifications of electrode materials for lithium ion batteries[J]. Solid State Sci., 2006, 8(2): 113-128.
[36] Yoshio M, Wang H, Fukuda K. Spherical Carbon-Coated Natural Graphite as a Lithium-Ion Battery-Anode Material[J]. Angewandte Chemie, 2003, 115(35): 4335-4338.
[37] Zhang S S, Xu K, Jow T R. Enhanced performance of Li-ion cell with LiBF4-PC based electrolyte by addition of small amount of LiBOB[J]. J. Power Sources, 2006, 156(2): 629-633.
[38] Untereker D, Lennox J C, Wier L, et al. Chemically modified electrodes: Part IV. Evidence for formation of monolayers of bonded organosilane reagents[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1977, 81(2): 309-318.
[39] Takamura T, Kikuchi M, Awano H, et al. Carbon Surface Conditioning Produces an Anode Suitable for Heavy- Duty Discharge in Li Secondary Batteries[J]. MATERIALS RESEARCH SOCIETY SYMPOSIUM PROCEEDINGS, 1995, 393: 345-356.
[40] Joho F, Novák P, Haas O, et al. Influence of graphite surface modifications on lithium intercalation properties[J]. Mol. Cryst. Liq. Cryst., 1998, 310(1): 383-388.
[41] Buqa H, Grogger C, Alvarez M V S, et al. Surface modification of graphite anodes by combination of high temperature gas treatment and silylation in nonaqueous solution[J]. J. Power Sources, 2001, 97(8): 126-128.
[42] Chen Z, Wang Q, Amine K. Improving the performance of soft carbon for lithium-ion batteries[J]. Electrochim. Acta, 2006, 51(19): 3890-3894.
[43] Pan Q, Jiang Y. Effect of covalently bonded polysiloxane multilayers on the electrochemical behavior of graphite electrode in lithium ion batteries[J]. J. Power Sources, 2008, 178(1): 379-386.
[44] Qin X Y, Wang J L, Tang D P, et al. Triethoxysilane with oligo (ethylene oxide) substituent as film forming additive for graphite anode[J]. Journal of Zhejiang University SCIENCE A, 2013, 14(7): 514-519.
[45] Wang S Q, Wang J L, Luo H, et al. A Novel Aminoalkylsilane Compound with Oligo (ethylene oxide) Units as Effective Additive for Improving Cyclability of Lithium-Ion Batteries[J]. J. Mater. Sci. Technol., 2013,29(10): 943-947.
[46] Obrovac M N, Christensen L. Structural changes in silicon anodes during lithium insertion/extraction[J]. Electrochem. Solid St, 2004, 7(5): A93-A96.
[47] Kasavajjula U, Wang C S, Appleby A J. Nano- and bulk- silicon-based insertion anodes for lithium-ion secondary cells[J]. J. Power Sources, 2007, 163(2): 1003-1039.
[48] Hatchard T D, Dahn J R. In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon[J]. J. Electrochem. Soc., 2004, 151(6): A838-A842.
[49] Liu Y, Hanai K, Yang J, et al. Silicon/carbon composites as anode materials for Li-ion batteries[J]. Electrochem. Solid St, 2004, 7(10): A369-A372.
[50] Obrovac M N, Krause L J. Reversible cycling of crystalline silicon powder[J]. J. Electrochem. Soc., 2007, 154(2): A103-A108.
[51] Song S W, Baek S W. Silane-Derived SEI Stabilization on Thin-Film Electrodes of Nanocrystalline Si for Lithium Batteries[J]. Electrochemical and Solid-State Letters, 2009, 12(2): A23.
[52] Choi N S, Yew K H, Kim H, et al. Surface layer formed on silicon thin-film electrode in lithium bis(oxalato) borate-based electrolyte[J]. J. Power Sources, 2007, 172(1): 404-409.
[53] Ulman A. Formation and structure of self-assembled monolayers[J]. Chem. Rev., 1996, 96(4): 1533-1554.
[54] Ryu Y G, Lee S, Mah S, et al. Electrochemical Behaviors of Silicon Electrode in Lithium Salt Solution Containing Alkoxy Silane Additives[J]. J. Electrochem. Soc., 2008, 155(8): A583.
[55] Nguyen C C, Song S W. Interfacial structural stabilization on amorphous silicon anode for improved cycling performance in lithium-ion batteries[J]. Electrochim. Acta, 2010, 55(8): 3026-3033.
[56] Choi H, Nguyen C C, Song S W. Control of Surface Chemistry and Electrochemical Performance of Carbon-coated Silicon Anode Using Silane-based Self-Assembly for Rechargeable Lithium Batteries[J]. B. Kor. Chem. Soc., 2010, 31(9): 2519-2526.
[57] Xu W, Vegunta S S S, Flake J C. Surface-modified silicon nanowire anodes for lithium-ion batteries[J]. J. Power Sources, 2011, 196(20): 8583-8589.
[58] Wang J L, Luo H, Mai Y J, et al. Synthesis of aminoalkylsilanes with oligo (ethylene oxide) unit as multifunctional electrolyte additives for lithium-ion batteries[J]. Science China Chemistry, 2013, 5(6): 739-745.
[59] Wang Z, Huang Y, Wang X, et al. Tetraethoxysilane as a new facilitative film-forming additive for the lithium-ion battery with LiMn2O4cathode[J]. Solid State Ionics, 2013, 232: 19-23.
/
〈 |
|
〉 |