鹰式波浪能装置旋转碰撞的损伤分析
收稿日期: 2014-02-15
修回日期: 2014-04-23
网络出版日期: 2014-04-30
基金资助
国家海洋可再生能源专项资金项目(GHME2011BL06);国家自然科学基金-青年科学基金项目(51109201)
Damage Analysis of Eagle Wave Energy Converter in Rotating-Collision
Received date: 2014-02-15
Revised date: 2014-04-23
Online published: 2014-04-30
陈爱菊 , 游亚戈 , 盛松伟 , 彭雯 . 鹰式波浪能装置旋转碰撞的损伤分析[J]. 新能源进展, 2014 , 2(2) : 129 -134 . DOI: 10.3969/j.issn.2095-560X.2014.02.008
The end beam on the Eagle wave energy converter (WEC) was broken up during the real sea experiment. To make clear the damage mechanism, the collision of the end beam and the wave energy absorber (WEA) was studied by the explicit nonlinear finite element analysis. In the simulation, the WEA was assumed as a rigid body, and the end beam an elastic-plastic structure. The inertia effects of WEA and the end beam were taken into account. Through the simulation, the structural stress and the deformation of the end beam were obtained. In addition, the energy absorption and the collision force were also investigated. The results fit well with the actual damage situation. We also simulated the impact of the device with different materials and intervals of bumper blocks on the WEC, and it was found that the beam was not strong enough to limit the motion of WEA. As a result, an improvement scheme of increasing the maximum volume of energy accumulator was presented to absorb the redundant kinetic energy of WEA.
[1] 游亚戈, 李伟, 刘伟民, 等. 海洋能发电技术的发展现状与前景[J]. 电力系统自动化, 2010, 34(14): 1-12.
[2] Yagi S, Kumamoto H, Muragishi O, et al. A study on collision buffer characteristic of sharp entrance angle bow structure[J]. Marine Structures, 2009, 22(1): 12-23.
[3] Paik J K, Pedersen P T. Modeling of the internal mechanics in ship collisions[J]. Ocean Engineering, 1996, 23(2): 107-142.
[4] 王自力, 顾永宁. 双层舷侧结构碰撞损伤过程研究[J]. 船舶工程, 2000, (1): 17-20.
[5] Wang L L, Yang L M, Huang D J. An impact dynamics analysis on a new crashworthy device against ship–bridge collision[J]. International Journal of Impact Engineering, 2008, 35(8): 895-904.
[6] 王自力, 顾永宁. 撞击参数对双层舷侧结构碰撞响应的影响[J]. 船舶工程, 2000, (6): 13-16.
[7] 程正顺, 胡志强, 杨建民. 半潜式平台结构抗撞性能研究[J]. 振动与冲击, 2012, 31(4): 38-43.
[8] Lehmann E, Peschmann J. Energy absorption by the steel structure of ships in the event of collisions[J]. Marine Structures, 2002, 15(4-5): 429-441.
[9] 梅志远. 基于MSC Dytran的潜艇结构撞击强度分 析[J]. 计算机辅助工程, 2006, 15(9): 71-74.
[10] 何勇, 金伟良, 张爱晖, 等. 船桥碰撞动力学过程的非线性数值模拟[J]. 浙江大学学报(工学版), 2008, 42(6): 1065-1070.
[11] 王自力, 蒋志勇, 顾永宁. 船舶碰撞数值仿真的附加质量模型[J]. 爆炸与冲击, 2002, 22(4): 322-326.
[12] Petersen M J. Dynamic of Collions[J]. Ocean Engineering, 1982, 9(4): 295-329.
[13] 江华涛. 船舶碰撞与缓冲船艏结构研究[D]. 上海交通大学, 2002. 99-104.
[14] 王自力, 顾永宁. 船舶碰撞动力学过程的数值仿真研究[J]. 爆炸与冲击, 2001, 21(1): 29-34.
[15] Naar H, Kujala P, Simonsen B C, et al. Comparison of the crashworthiness of various bottom and side structures[J]. Marine Structures, 2002, 15(4-5): 443-460.
[16] 刘中华, 程秀生, 杨海庆, 等. 薄壁直梁撞击时的变形及吸能特性[J]. 吉林大学学报(工学版), 2006, 36(1): 25-30.
/
〈 |
|
〉 |