欢迎访问《新能源进展》官方网站!今天是
论文

基于液体介质的电动汽车动力电池热管理研究进展

  • 霍宇涛 ,
  • 饶中浩 ,
  • 刘新健 ,
  • 赵佳腾
展开
  • 中国矿业大学电力工程学院,徐州 221116
霍宇涛(1992-),男,硕士研究生,主要从事电动汽车动力电池热管理研究。

收稿日期: 2014-02-28

  修回日期: 2014-04-23

  网络出版日期: 2014-04-30

基金资助

中央高校基本科研业务费专项资金资助(2014QNA24)

Research Development of Battery Thermal Management System

  • HUO Yu-tao ,
  • RAO Zhong-hao ,
  • LIU Xin-jian ,
  • ZHAO Jia-teng
Expand
  • School of Electric Power Engineering, China University of Mining and Technology, Xuzhou 221116 China

Received date: 2014-02-28

  Revised date: 2014-04-23

  Online published: 2014-04-30

摘要

电动汽车在节能减排上具有很大的潜力和优势,但其性能受动力电池的制约,而温度又会影响电池的安全和寿命。因此,为保证电动汽车的综合性能,需配置合理的电池热管理系统。由于液体冷却具有较好的降温效果,采用液体介质对电池进行热管理近年来逐渐引起重视。本文介绍了基于液体介质的电池热管理基本原理,综述了液体介质应用于电池热管理的研究进展,并重点介绍了新型热管在电池散热方面的应用,同时指出了目前液体介质冷却电池时存在的一些问题。

本文引用格式

霍宇涛 , 饶中浩 , 刘新健 , 赵佳腾 . 基于液体介质的电动汽车动力电池热管理研究进展[J]. 新能源进展, 2014 , 2(2) : 135 -140 . DOI: 10.3969/j.issn.2095-560X.2014.02.009

Abstract

The electric vehicles (EVs) have great potential and advantage in energy conservation and emission reduction. However, the performance of EVs is restricted by power battery, whose safety and lifetime are affected by temperature. Thus, a suitable battery thermal management (BTM) system is indispensable to guarantee the whole performance of EVs. BTM system employed liquid medium has received much attention in recent years as its excellent cooling effect. In this paper, the fundamental of liquid medium based BTM was introduced and the development of research and application of liquid medium based BTM especially by using novel heat pipes were summarized. Some precautions during the design and application of liquid medium for cooling the battery were also pointed out.

参考文献

[1] White B E. Energy-harvesting devices: Beyond the battery[J]. Nature nanotechnology, 2008, 3(2): 71-72.

[2] Hu X, Chang S, Li J, et al. Energy for sustainable road transportation in China: Challenges, initiatives and policy implications[J]. Energy, 2010, 35(11): 4289-4301.

[3] Campanari S, Manzolini G, Garcia De La Iglesia F. Energy analysis of electric vehicles using batteries or fuel cells through well-to-wheel driving cycle simulations[J]. Journal of Power Sources, 2009, 186(2): 464-477.

[4] Sandy Thomas C. Transportation options in a carbon-constrained world: Hybrids, plug-in hybrids, biofuels, fuel cell electric vehicles, and battery electric vehicles[J]. International Journal of Hydrogen Energy, 2009, 34(23): 9279-9296.

[5] Wada M. Research and development of electric vehicles for clean transportation[J]. Journal of Environmental Sciences, 2009, 21(6): 745-749.

[6] Andersen P H, Mathews J A, Rask M. Integrating private transport into renewable energy policy: The strategy of creating intelligent recharging grids for electric vehicles[J]. Energy Policy, 2009, 37(7): 2481-2486.

[7] Huo H, Zhang Q, Wang M Q, et al. Environmental Implication of Electric Vehicles in China[J]. Environmental Science & Technology, 2010, 44(13): 4856-4861.

[8] Duan X, Naterer G F. Heat transfer in phase change materials for thermal management of electric vehicle battery modules[J]. International Journal of Heat and Mass Transfer, 2010, 53(23-24): 5176-5182.

[9] Nakayama M, Fukuda K, Araki T, et al. Thermal behavior of nickel metal hydride battery during rapid charge and discharge cycles[J]. Electrical Engineering in Japan, 2006, 157(4): 30-39.

[10] Bose C S C, Mathiesen G W. Gas evolution, recombination and grid corrosion in a VRLA battery under high temperature operating conditions[C]// Telecommunications Energy Conference, 1997 INTELEC 97, 19th International, 19-23 Oct 1997, 1997.

[11] Wang Q, Ping P, Zhao X, et al. Thermal runaway caused fire and explosion of lithium ion battery[J]. Journal of Power Sources, 2012, 208: 210-224.

[12] Nagpure S C, Dinwiddie R, Babu S S, et al. Thermal diffusivity study of aged Li-ion batteries using flash method[J]. Journal of Power Sources, 2010, 195(3): 872-876.

[13] Park H. A design of air flow configuration for cooling lithium ion battery in hybrid electric vehicles[J]. Journal of Power Sources, 2013, 239: 30-36.

[14] Rao Z H, Wang S F, Zhang Y L. Simulation of heat dissipation with phase change material for cylindrical power battery[J]. Journal of the Energy Institute, 2012, 85(1): 38-43.

[15] Mottard J M, Hannay C, Winandy E L. Experimental study of the thermal behavior of a water cooled Ni–Cd battery[J]. Journal of Power Sources, 2003, 117(1-2): 212-222.

[16] Swanepoel G. Thermal management of hybrid electrical vehicles using heat pipes[D]. University of Stellenbosch, 2001.

[17] Wu M S, Liu K, Wang Y Y, et al. Heat dissipation design for lithium-ion batteries[J]. Journal of power sources, 2002, 109(1): 160-166.

[18] Rao Z, Zhang G, Zhang L. Simulate and experimental research on air-cooled thermal energy management of lithium-ion power battery[C]//The 25th International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exposition, Shenzhen, China, 5-9 Nov, 2010.

[19] Rao Z, Wang S, Zhang G. Simulation and experiment of thermal energy management with phase change material for ageing LiFePO4 power battery[J]. Energy Conversion and Management, 2011, 52(12): 3408-3414.

[20] Sabbah R, Kizilel R, Selman J R, et al. Active (air-cooled) vs. passive (phase change material) thermal management of high power lithium-ion packs: Limitation of temperature rise and uniformity of temperature distribution[J]. Journal of Power Sources, 2008, 182(2): 630-638.

[21] 饶中浩. 基于固液相变传热介质的动力电池热管理研究[D]. 华南理工大学, 2013.

[22] Karimi G, Li X. Thermal management of lithium-ion batteries for electric vehicles[J]. International Journal of Energy Research, 2013, 37(1): 13-24.

[23] Pesaran A A. Battery Thermal Management in EV and HEVs: Issues and Solutions[J]. Battery Man, 2001, 43(5): 34-49.

[24] Pesaran A, Vlahinos A, Stuart T. Cooling and preheating of batteries in hybrid electric vehicles[C]//6th ASME- JSME Thermal Engineering Joint Conference, 2003.

[25] Jarrett A, Kim I Y. Design optimization of electric vehicle battery cooling plates for thermal performance[J]. Journal of Power Sources, 2011, 196(23): 10359-10368.

[26] Gaugler, Richard S. Heat transfer device [P]. US Patent: 2350348, 1944.

[27] 张国庆, 吴忠杰, 饶中浩, 等. 动力电池热管冷却效果实验[J]. 化工进展, 2009, 28(07): 1165-1168+1174.

[28] 吴忠杰, 张国庆. 混合动力车用镍氢电池的液体冷却系统[J]. 广东工业大学学报, 2008, 25(04): 28-31.

[29] Rao Z, Zhang Y, Wang S. Energy saving of power battery by liquid single-phase convective heat transfer[J]. Energy Education Science & Technology, Part: A Energy Science and Research, 2012, 30(1): 103-112.

[30] 袁昊, 王丽芳, 王立业. 基于液体冷却和加热的电动汽车电池热管理系统(英文)[J]. 汽车安全与节能学报, 2012, 3(04): 371-380.

[31] 徐晓明, 赵又群. 基于双进双出流径液冷系统散热的电池模块热特性分析[J]. 中国机械工程, 2013, 24(03): 313-316+321.

[32] Park Y, Jun S, Kim S, et al. Design optimization of a loop heat pipe to cool a lithium ion battery onboard a military aircraft[J]. Journal of Mechanical Science and Technology, 2010, 24(2): 609-618.

[33] Adoni A A, Ambirajan A, Jasvanth V S, et al. Thermohydraulic Modeling of Capillary Pumped Loop and Loop Heat Pipe[J]. Journal of Thermophysics and Heat Transfer, 2007, 21(2): 410-421.

[34] 孙世良, 郑立秋, 孙世梅. 热管技术应用于燃料电池热管理系统的可行性研究[J]. 吉林建筑工程学院学报, 2011, 28(02): 40-42.

[35] Leriche M, Harmand S, Lippert M, et al. An experimental and analytical study of a variable conductance heat pipe: Application to vehicle thermal management[J]. Applied Thermal Engineering, 2012, 38:48-57.

[36] Burban G, Ayel V, Alexandre A, et al. Experimental investigation of a pulsating heat pipe for hybrid vehicle applications[J]. Applied Thermal Engineering, 2013, 50(1): 94-103.

[37] Rao Z, Wang S, Wu M, et al. Experimental investigation on thermal management of electric vehicle battery with heat pipe[J]. Energy Conversion and Management, 2013, 65: 92-97.

[38] Greco A, Cao D, Jiang X, et al. A theoretical and computational study of lithium-ion battery thermal management for electric vehicles using heat pipes[J]. Journal of Power Sources, 2014, 257: 344-355.

文章导航

/