基于石墨泡沫强化的相变储能材料研究进展
收稿日期: 2013-11-27
修回日期: 2014-04-10
网络出版日期: 2014-04-30
基金资助
国家自然科学基金(51176173);河南省教育厅科学技术研究重点项目(14A480002);2013年地方高校国家级大学生创新创业训练计划项目(201310459111)
Research Progress on Phase Change Material Enhancement by Graphite Foam
Received date: 2013-11-27
Revised date: 2014-04-10
Online published: 2014-04-30
郭茶秀 , 王闯 . 基于石墨泡沫强化的相变储能材料研究进展[J]. 新能源进展, 2014 , 2(2) : 146 -150 . DOI: 10.3969/j.issn.2095-560X.2014.02.011
The low thermal conductivity is the key factor which prevents phase change materials (PCM) to get widely used in industry. Therefore, the emphasis of research on PCM is how to improve the effective heat conductivity. The heat transfer performance of graphite foams is better due to its special microcellular 3D construction, so it has great prospect on energy storage systems. Scholars at home and abroad have carried on research of enhancement of phase change heat transfer by graphite foam. In this paper, the research progress and problems of graphite foams/PCM based on experimental and numerical approaches are introduced.
Key words: graphite foam; phase change material; enhancement heat transfer
[1] Ettouney H M, Alatiqi I, Al-Sahali M, et al. Heat transfer enhancement by metal screens and metal spheres in phase change energy storage systems[J]. Renewable Energy, 2004, 29: 841-860.
[2] Zhang Z G, Fang X M. Study on paraffin/expanded graphite composite phase change thermal energy storage material[J]. Energy Conversion and Management, 2006, 47: 303-310.
[3] Sari A, Karaipekli A. Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/ expanded graphite composite as phase change material[J]. Applied Thermal Engineering, 2007, 27: 1271-1277.
[4] Velraj R, Seeniraj R V, Hafner B, et al. Experimental analysis and numerical modeling of inward solidification on a finned vertical tube for a latent heat storage unit[J]. Solar Energy, 1997, 60(5): 281-290.
[5] Frusteri F, Leonardi V, Maggio G. Numerical approach to describe the phase change of an inorganic PCM containing carbon fibers[J]. Applied Thermal Engineering, 2006, 26: 1883-1892.
[6] Shaikh S, Lafdi K, Hallinan K. Carbon nanoadditives to enhance latent energy storage of phase change materials[J]. J. Appl. Phys, 2008, 103: 1-6.
[7] 吴淑英, 朱冬生, 汪南. 改善有机储热材料传热性能的研究进展及应用[J], 现代化工, 2009, 29(10): 19-23.
[8] 程文龙, 韦文静. 高孔隙率泡沫金属相变材料储能传热特性[J]. 太阳能学报, 2007, 28(7): 739-744.
[9] 张新铭, 郭瑞, 陈菁. 石墨泡沫材料性能研究的随机建模方法[J]. 炭素技术, 2009, 6(28): 24-27.
[10] 王永刚, 林雄超, 杨慧君, 等. 石墨化CVI泡沫炭的结构和性能[J]. 材料科学与工程学报, 2008, 26(3): 365-368.
[11] Klett J W, McMillan A D, Gallego N C, et al. Effects of heat treatment conditions on the thermal properties of mesophase pith-derived graphitic foams[J]. Carbon, 2004, 42: 1849-1852.
[12] 钟继鸣, 王新营, 郁铭芳, 等. 石墨化碳泡沫导热性能研究[J]. 材料导报, 2006, 5(20): 268-270.
[13] Zhong Y J, Guo Q G, Li S Z, et al. Heat transfer enhancement of paraffin wax using graphite foam for thermal energy storage[J]. Solar Energy Materials&Solar Cells, 2010, 94: 1011-1014.
[14] Wu Z G, Zhao C Y. Experimental investigations of porous materials in high temperature thermal energy storage systems[J]. Solar Energy, 2011, 85: 1371-1380.
[15] 肖鑫, 张鹏. 泡沫石墨/石蜡复合相变材料热物性研 究[J]. 工程热物理学报, 2013, 3(34): 530-533.
[16] 仲亚娟, 李四中, 魏兴海, 等. 不同孔隙结构的炭材料作为石蜡相变储能材料强化传热载体[J]. 新型炭材料, 2009, 24(4): 249-353.
[17] 宋金亮, 郭全贵, 仲亚娟, 等. 高密度石墨泡沫及其石蜡复合材料的热物理性能[J]. 新型炭材料, 2012, 27(1): 27-34.
[18] 郭茶秀, 刘树兰. 铝泡沫和石墨泡沫强化石蜡相变传热的数值模拟[J]. 郑州大学学报, 2012, 33(3): 87-90.
[19] Mahmoud M S, Khodadadi J M. Thermal conductivity improvement of phase change materials/graphite foam composites[J]. Carbon, 2013, 60: 117-128.
[20] Lafdi K, Mesalhy O, Elgafy A. Graphite foams infiltrated with phase change materials as alternative materials for space and terrestrial thermal energy storage application[J]. Carbon, 2008, 46: 159-168.
[21] 刘树兰. 石墨泡沫强化共晶盐相变蓄热数值模拟研 究[D]. 郑州: 郑州大学, 2012. 6-9.
[22] 王彦红, 郑成亮, 俞会根, 等. 相变材料在动力电池管理中的应用研究进展[J]. 功能材料, 2013, 22(44): 213-3218.
/
〈 |
|
〉 |