0 引言
1 合金储氢反应的数值模型
1.1 模型假设
1.2 反应区的守恒方程












参数 | 数值 |
---|---|
初始温度T0/K | 293.15 |
参考温度Tref/K | 303.15 |
吸氢压强Pin/MPa | 1.5 |
参考压强Pref/MPa | 1.5 |
吸氢速率常数Ca/s | 59.187 |
活化能Ea/(J/mol) | 21 179.6 |
氢气热容 ![]() | 1 489 |
储氢合金热容 ![]() | 419 |
氢气导热系数Kg/[W/(m∙K)] | 0.167 |
合金导热系数Ks/[W/(m∙K)] | 1.3 |
储氢合金孔隙率ε | 0.65 |
孔隙区渗透率k/m2 | 1 × 10-8 |
冷却温度Ts/K | 293.15 |
合金密度 ![]() | 8 300 |
饱和合金密度 ![]() | 8 428 |
1.3 模型验证
Fig. 1 Schematic structure of the validation model: (a) test platform for hydrogen absorption/release performance of solid metal hydrogen storage system; (b) simulation verification model图1 验证模型结构示意图:(a)固态金属储氢系统吸/放氢性能测试平台;(b)仿真验证模型 |
Table 2 Main parameters of solid metal hydrogen storage tanks表2 固态金属储氢罐主要参数 |
参数 | 数值(材质) |
---|---|
罐体材料 | 不锈钢 |
罐体尺寸/mm | ϕ56 × L380 |
罐体壁厚/mm | 3 |
导热系数/[W/(m∙K)] | 14.6 |
热通量/(W/m2) | 1 671.02 |
储氢材料 | LaNi5 |
储氢材料含量/kg | 5 |
额定储氢量/L | 560 |
接口尺寸/mm | 6 |
充氢压力/MPa | 1.5~2.5 |
放氢出口压力/MPa | 0.2~1.0 |
Fig. 2 Comparative analysis of simulation results and experimental results图2 仿真模拟结果与实验结果对比分析 |
2 罐式反应器仿真模拟结果与讨论
Fig. 3 Tank reactor: (a) reactor model; (b) temperature measurement point selection图3 罐式反应器:(a)反应器模型;(b)测温点选取 |
Table 3 Main parameters of tank reactor simulation表3 罐式反应器仿真主要参数 |
参数 | 数值(材质) |
---|---|
罐体尺寸/mm | ϕ56 × L116 |
罐体壁厚/mm | 3 |
储氢材料 | LaNi5 |
储氢材料含量/kg | 1 |
吸氢压强/MPa | 1.5 |
初始温度/K | 293.15 |
Fig. 4 Simulation results of tank reactor图4 罐式反应器仿真结果 |
Fig. 5 Simulation of hydrogen adsorption reaction in tank reactors图5 罐式反应器吸氢反应仿真模拟云图 |
3 系统传热结构优化与仿真模拟
Fig. 6 Double cooling tube reactor: (a) reactor model;(b) temperature measurement point selection; (c) temperature measurement point location图6 双冷却管反应器:(a)反应器模型;(b)测温点选择;(c)测温点位置 |
Fig. 7 Simulation results of double cooling tube reactor:(a) temperature curves; (b) atomic fraction curves图7 双冷却管反应器仿真结果:(a)温度曲线;(b)原子分数曲线 |
Fig. 8 Simulation of hydrogen adsorption reaction in a double cooling tube reactor图8 双冷却管反应器吸氢反应仿真模拟云图 |
Fig. 9 Four cooling tube reactor: (a) reactor model; (b) temperature measurement point selection; (c) temperature measurement point location图9 四冷却管反应器:(a)反应器模型;(b)测温点选择;(c)测温点位置 |
Fig. 10 Simulation results of four cooling tube reactor图10 四冷却管反应器仿真结果 |
Fig. 11 Simulation of hydrogen absorption reaction in a four cooling tube reactor图11 四冷却管反应器吸氢反应仿真模拟云图 |
Fig. 12 Axial section of a four cooling tube reactor图12 四冷却管反应器轴向切面 |
Fig. 13 Schematic diagram of the structure of optimized scenario A: (a) reactor model; (b) temperature measurement point selection图13 优化方案A结构示意图:(a)反应器模型;(b)测温点选取 |
Fig. 14 Simulation results of optimized scenario A图14 优化方案A仿真结果 |
Fig. 15 Simulation cloud diagram of optimized scenario A图15 优化方案A仿真模拟云图 |
Fig. 16 Structure of optimized scenario B: (a) reactor model; (b) temperature measurement point selection图16 优化方案B结构:(a)反应器模型;(b)测温点选取 |
Fig. 17 Temperature and atomic fraction curves of the hydrogen absorption reaction at different cooling temperatures of optimization scenario B图17 优化方案B在不同冷却温度下的吸氢反应温度曲线和原子分数曲线 |
Fig. 19 Simulation hydrogen-absorbing atom fraction cloud diagram of optimized scenario B图19 优化方案B仿真模拟吸氢原子分数分布云图 |
Fig. 18 Simulation temperature distribution cloud diagram of optimized scenario B图18 优化方案B仿真模拟温度分布云图 |
Fig. 20 Curves of average reaction zone temperature and average hydrogen-absorbing atom fraction in the reaction zone for each scheme at 293.15 K (a) and scenario B at different cooling temperatures (b)图20 各方案在293.15 K下(a)及方案B在不同冷却温度下(b)的反应区平均温度及反应区平均吸氢原子分数曲线 |
Table 4 Statistical data for different scenarios表4 各方案数据统计 |
方案名称(冷却条件) | 方案代号 | 温降时长/s | 吸氢时长/s |
---|---|---|---|
罐式反应器 | 0 | 2 030 | 1 200 |
双冷却管反应器 | 1 | 1 200 | 790 |
四冷却管反应器 | 2 | 800 | 620 |
优化方案A | A | 630 | 560 |
优化方案B(293.15 K) | B293 | 580 | 550 |
优化方案B(288.15 K) | B288 | 350 | 530 |
优化方案B(283.15 K) | B283 | 290 | 520 |
优化方案B(278.15 K) | B278 | 250 | 520 |
Fig. 21 Temperature drop duration and hydrogen absorption duration for each scenario图21 各方案温降时长与吸氢时长对比 |