苏尔士增强型地热系统的开发经验及对我国地热开发的启示

翟海珍,苏 正,吴能友

新能源进展 ›› 2014, Vol. 2 ›› Issue (4) : 286-294.

PDF(2787 KB)
欢迎访问《新能源进展》官方网站!今天是 2025年5月28日 星期三
PDF(2787 KB)
新能源进展 ›› 2014, Vol. 2 ›› Issue (4) : 286-294. DOI: 10.3969/j.issn.2095-560X.2014.04.008
论文

苏尔士增强型地热系统的开发经验及对我国地热开发的启示

  • 翟海珍1,2,苏  正1,吴能友
作者信息 +

Development Experiences of the Soultz Enhanced Geothermal Systems and Inspirations for Geothermal Development of China

  • ZHAI Hai-zhen1,2, SU Zheng1, WU Neng-you1
Author information +
文章历史 +

摘要

增强型地热系统是采用人工形成地热储层的方法,从低渗透性岩体中经济地采出相当数量深层热能的人工地热系统。法国苏尔士(Soultz)地热项目已有20多年开发研究历史,但前人尚未对开发过程中的关键问题进行深入探讨,对其成功经验也未进行系统总结归纳。本文通过回顾其发展历程,总结该项目在钻井、储层激发、水力循环测试和储层监测方面的成功经验,同时提炼出地热开发中遇到的储层建设和井下泵设备等方面的问题,并指出数值模拟在地热开发过程应用方面的启示。苏尔士地热项目开发吸取了其他早期地热田的经验和教训,成功地建造了商业规模的人工激发储层,产生了大量的科研成果和先进技术,对后续开发的地热项目有重要指导意义。

Abstract

Enhanced geothermal systems (EGS) is artificial engineered reservoirs that is created to extract economical amounts of heat from deep located hot dry rock of low permeability and/or porosity. The Soultz EGS project has been exploited for 20 years and is still going on. But during this process neither critical issue about the project was intensively investigated, nor was the success of the project systematically summarized. This paper reviews the history of the project, and summarizes the successful experiences in drilling, reservoir stimulation, hydraulic test, and reservoir monitoring. The reservoir construction and downhole pump problems faced in geothermal development are therefore extracted at the same time. And then some enlightenments are gained from the application of numerical simulations on geothermal energy exploitation. The Soultz project learned lessons from other earlier geothermal fields, successfully created the artificial reservoir of business scale, and meanwhile produced a large number of scientific research achievements and advanced technologies. The Soultz geothermal project has great significance on guiding the later geothermal researches.

关键词

增强型地热系统(EGS) / 苏尔士 / 储层激发

Key words

enhanced geothermal systems (EGS) / Soultz / reservoir stimulation

引用本文

导出引用
翟海珍,苏 正,吴能友. 苏尔士增强型地热系统的开发经验及对我国地热开发的启示[J]. 新能源进展, 2014, 2(4): 286-294 https://doi.org/10.3969/j.issn.2095-560X.2014.04.008
ZHAI Hai-zhen, SU Zheng, WU Neng-you. Development Experiences of the Soultz Enhanced Geothermal Systems and Inspirations for Geothermal Development of China[J]. Advances in New and Renewable Energy, 2014, 2(4): 286-294 https://doi.org/10.3969/j.issn.2095-560X.2014.04.008

参考文献

[1] 赵阳升, 万志军, 康建荣. 高温岩体地热开发导论[M]. 北京: 科学出版社, 2004.

[2] 苏正, 吴能友, 曾玉超, 等. 增强型地热系统研究开发: 以美国新墨西哥州芬登山为例[J]. 地球物理学进展, 2012, 27(2): 771-779.

[3] 王晓星, 吴能友, 苏正, 等. 增强型地热系统的开发——以法国苏尔土地热田为例[J]. 热能动力工程, 2012, 27(6): 631-636.

[4] Tester J W, Anderson B, Batchelor A, et al. The future of geothermal energy: Impact of enhanced geothermal systems (EGS) on the United States in the 21st century[J]. Massachusetts Institute of Technology, 2006.

[5] Gérard A, Genter A, Kohl T, et al. The deep EGS (enhanced geothermal system) project at Soultz-sous- forêts (Alsace, France)[J]. Geothermics, 2006, 35(5): 473-483.

[6] Genter A, Evans K, Cuenot N, et al. Contribution of the exploration of deep crystalline fractured reservoir of Soultz to the knowledge of enhanced geothermal systems (EGS)[J]. Comptes Rendus Geoscience, 2010, 342(7): 502-516.

[7] Genter A, Cuenot N, Goerke X, et al. Status of the Soultz geothermal project during exploitation between 2010 and 2012[C]//Proceedings 37th Workshop on Geothermal Reservoir Engineering, Stanford University, USA. 2012.

[8] Genter A, Cuenot N, Melchert B, et al. Main achievements from the multi-well EGS Soultz project during geothermal exploitation from 2010 and 2012[C]// Proceedings European Geothermal Energy Congress, EGC 2013. 2013.

[9] Bächler D, Kohl T. Coupled thermal–hydraulic–chemical modelling of enhanced geothermal systems[J]. Geophysical Journal International, 2005, 161(2): 533-548.

[10] Dorbath L, Cuenot N, Genter A, et al. Seismic response of the fractured and faulted granite of Soultz-sous-Forêts (France) to 5 km deep massive water injections[J]. Geophysical Journal International, 2009, 177(2): 653-675.

[11] Radilla G, Sausse J, Sanjuan B, et al. Interpreting tracer tests in the enhanced geothermal system (EGS) of Soultz-sous-Forêts using the equivalent stratified medium approach[J]. Geothermics, 2012, 44: 43-51.

[12] Ledésert B, Hebert R, Genter A, et al. Fractures, hydrothermal alterations and permeability in the Soultz Enhanced Geothermal System[J]. Comptes Rendus Geoscience, 2010, 342(7): 607-615.

[13] Genter A, Baumgaertner J, Cuenot N, et al. The EGS Soultz Case Study: Lessons learnt after two decades of geothermal researches[C]//Second European Geothermal Review. Geothermal Energy for Power Production. 2010.

[14] Baria R, Jung R, Tishner T, et al. Creation of an HDR reservoir at 5000 m depth at the European HDR project[C]//Proceedings, Thirty-First Workshop on Geothermal Reservoir Engineering. 2006.

[15] Genter A, Fritsch D, Cuenot N, et al. Overview of the current activities of the European EGS Soultz project: from exploration to electricity production[C]//Proceedings, Thirty-Fourth Workshop on Geothermal Reservoir Engineering. 2009.

[16] Cloetingh S, Van Wees J D, Ziegler P A, et al. Lithosphere tectonics and thermo-mechanical properties: An integrated modelling approach for Enhanced Geothermal Systems exploration in Europe[J]. Earth- Science Reviews, 2010, 102(3): 159-206.

[17] Fritz B, Jacquot E, Jacquemont B, et al. Geochemical modelling of fluid–rock interactions in the context of the Soultz-sous-Forêts geothermal system[J]. Comptes Rendus Geoscience, 2010, 342(7): 653-667.

[18] Portier S, Vuataz F D. Developing the ability to model acid-rock interactions and mineral dissolution during the RMA stimulation test performed at the Soultz-sous-Forêts EGS site, France[J]. Comptes Rendus Geoscience, 2010, 342(7): 668-675.

[19] Finsterle S, Zhang Y, Pan L, et al. Microhole arrays for improved heat mining from enhanced geothermal systems[J]. Geothermics, 2013, 47: 104-115.

[20] Pruess K. On production behavior of enhanced geothermal systems with CO2 as working fluid[J]. Energy Conversion and Management, 2008, 49(6): 1446-1454.

[21] Gessner K, Kühn M, Rath V, et al. Coupled process models as a tool for analysing hydrothermal systems[J]. Surveys in geophysics, 2009, 30(3): 133-162.

[22] Bataillé A, Genthon P, Rabinowicz M, et al. Modeling the coupling between free and forced convection in a vertical permeable slot: Implications for the heat production of an Enhanced Geothermal System[J]. Geothermics, 2006, 35(5): 654-682.

[23] Heidinger P. Integral modeling and financial impact of the geothermal situation and power plant at Soultz-sous- Forêts[J]. Comptes Rendus Geoscience, 2010, 342(7): 626-635.

[24] 刘尚贤, 阳光玖, 黄晓波. 中国地热发电综述[J]. 四川电力技术, 1999, (5): 1-6.

[25] 何丽娟, 汪集暘. 沉积盆地热演化研究进展: 回顾与展望[J]. 地球物理学进展, 2007, 22(4): 1215-1219.

[26] 何丽娟, 胡圣标, 杨文采, 等. 中国大陆科学钻探主孔动态地温测量[J]. 地球物理学报, 2006, 49(3): 745-752.

[27] 上官志冠, 孙明良, 李恒忠. 云南腾冲地区现代地热流体活动类型[J]. 地震地质, 1999, 21(4): 436-442.

[28] 陈廷方. 云南腾冲火山岩岩石学特征[J]. 沉积与特提斯地质, 2003, 23(4): 56-61

[29] 刘虹, 张国平, 金志升, 等. 云南腾冲地区地热流体的地球化学特征[J]. 矿物学报, 2009, 29(4): 496-501.

[30] 徐青, 李翠华, 汪缉安, 等. 云南地热资源——以腾冲地区为重点进行解剖[J]. 地质地球化学, 1997, (4): 77-84.

[31] 刘志江, 蒋祥军, 吴方之. 西藏羊八井地热发电技术的发展[J]. 动力工程, 1989, (2): 57-59.

[32] 周大吉. 西藏羊八井地热发电站的运行、问题及对  策[J]. 电力建设, 2003, 24(10): 1-9.

[33] 徐纪人, 赵志新, 石川有三. 青藏高原中南部岩石圈扩张应力场与羊八井地热异常形成机制[J]. 地球物理学报, 2005, 48(4): 861-869.

[34] 多吉, 曾毅, 焦兴义, 等. 西藏地热发电的回顾与思 考[J]. 地热能, 2007, (6): 17-19.

[35] 刘连捷. 对西藏羊八井地热田深层地热资源的分析[J]. 西藏地质,1993, (1): 96-102.

[36] 魏晓阳, 郭清海, 袁建飞, 等. 高温地热流体来源氟在环境中的分布特征——以西藏羊八井热田为例[J]. 华东理工大学学报(自然科学版), 2009, 32(1): 38-44.

[37] 周安朝, 赵阳升, 郭进京, 等. 西藏羊八井地区高温岩体地热开采方案研究[J]. 岩石力学与工程学报, 2010, 29(2): 4089-4095.

[38] 王绍亭, 陈新民. 西藏地热资源及地热发电的现状与发展[J]. 中国电力, 1999, 32(10): 79-81.

[39] 谢鄂军. 西藏地热资源开发利用方案探讨[J]. 西藏科技, 2002, (3): 16-27.

[40] 苏正, 王晓星, 胡剑, 等. 我国增强型地热系统选址问题探讨[J]. 地球物理学进展, 2014, 29(1): 386-391.

基金

国家863计划(2012AA052802);中科院广州能源所所长基金培育项目(y107a41001)


PDF(2787 KB)

41

Accesses

0

Citation

Detail

段落导航
相关文章

/