Research Progress and Prospect of Microalgae Bioenergy
ZHU Shun-ni1,2,3, LIU Fen1,2,3,4, FAN Jun-hui5, LI Xian-qiang5, WANG Zhong-ming1,2,3
Author information+
1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; 2. CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; 3. Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China; 4. University of Chinese Academy of Sciences, Beijing 100049, China; 5. Guangdong Sanxin energy environmental protection Co., Ltd, Guangzhou 510630, China
Energy is the lifeblood for the modern society development. At present, fossil fuels are still the main source of energy, and the energy crisis and environmental problems caused by excessive dependence on fossil fuels are increasingly prominent. Human beings need to find renewable and clean energy as an alternative energy. As a sustainable bioenergy material, microalgae have great potential for development. Herein, the research status of microalgae raw material acquisition, including microalgae breeding, scale culture and harvesting were reviewed. The research progress of bioenergy products from microalgae biomass, including biodiesel, bio-ethanol, biogas, bio-oil, was emphatically discussed. The future research direction of microalgae bioenergy was also pointed out.
ZHU Shun-ni, LIU Fen, FAN Jun-hui, LI Xian-qiang, WANG Zhong-ming.
Research Progress and Prospect of Microalgae Bioenergy[J]. Advances in New and Renewable Energy, 2018, 6(6): 467-474 https://doi.org/10.3969/j.issn.2095-560X.2018.06.002
[1] Sen R.Biotechnology in petroleum recovery: The microbial EOR[J]. Progress in energy and combustion science, 2008, 34(6): 714-724. DOI: 10.1016/j.pecs.2008.05.001. [2] DA SILVA T L, REIS A, MEDEIROS R, et al. Oil production towards biofuel from autotrophic microalgae semicontinuous cultivations monitorized by flow cytometry[J]. Applied biochemistry and biotechnology, 2009, 159(2): 568-578. DOI: 10.1007/s12010-008-8443-5. [3] KOONIN S E.Getting serious about biofuels[J]. Science, 2006, 311(5760): 435. DOI: 10.1126/science.1124886. [4] 梅洪, 张成武, 殷大聪, 等. 利用微藻生产可再生能源研究概况[J]. 武汉植物学研究, 2008, 26(6): 650-660. DOI: 10.3969/j.issn.2095-0837.2008.06.017. [5] YEN H W, HU I C, CHEN C Y, et al.Microalgae-based biorefinery - From biofuels to natural products[J]. Bioresource technology, 2013, 135: 166-174. DOI: 10.1016/j.biortech.2012.10.099. [6] 张琪, 刘淑丽, 张立国, 等. 藻类生物质能源关键技术分析[J]. 东北水利水电, 2013, 31(8): 26-28. DOI: 10.3969/j.issn.1002-0624.2013.08.010. [7] 范勇, 胡光荣, 王丽娟, 等. 微藻育种研究进展[J]. 生物学杂志, 2017, 34(2): 3-8, 35. DOI: 10.3969/j.issn.2095- 1736.2017.02.003. [8] 梁英, 陈书秀. 微藻育种的研究现状及前景[J]. 海洋通报, 2008, 27(3): 88-94. DOI: 10.3969/j.issn.1001- 6392.2008.03.014. [9] LIM D K Y, SCHUHMANN H, SHARMA K, et al. Isolation of high-lipid Tetraselmis suecica strains following repeated UV-C mutagenesis, FACS, and high-throughput growth selection[J]. Bioenergy research, 2015, 8(2): 750-759. DOI: 10.1007/s12155-014-9553-2. [10] POLINER E, FARRÉ E M, BENNING C.Advanced genetic tools enable synthetic biology in the oleaginous microalgae Nannochloropsis sp.[J]. Plant cell reports, 2018, 37(10): 1383-1399. DOI: 10.1007/s00299-018-2270-0. [11] XUE J, NIU Y F, HUANG T, et al.Genetic improvement of the microalga Phaeodactylum tricornutum for boosting neutral lipid accumulation[J]. Metabolic engineering, 2015, 27: 1-9. DOI: 10.1016/j.ymben.2014.10.002. [12] ZHU J Y, RONG J F, ZONG B N.Factors in mass cultivation of microalgae for biodiesel[J]. Chinese journal of catalysis, 2013, 34(1): 80-100. DOI: 10.1016/S1872-2067(11)60497-X. [13] BHARATHIRAJA B, CHAKRAVARTHY M, KUMAR R R, et al.Aquatic biomass (algae) as a future feed stock for bio-refineries: A review on cultivation, processing and products[J]. Renewable and sustainable energy reviews, 2015, 47: 634-653. DOI: 10.1016/j.rser.2015.03.047. [14] OSWALD W J, GOLUEKE C G. Biological transformation of solar energy[J]. Advances in applied microbiology, 1960, 2: 223-262. |DOI: 10.1016/S0065-2164(08)70127-8. [15] KUMAR K, MISHRA S K, SHRIVASTAV A, et al.Recent trends in the mass cultivation of algae in raceway ponds[J]. Renewable and sustainable energy reviews, 2015, 51: 875-885. DOI: 10.1016/j.rser.2015.06.033. [16] PULZ O.Photobioreactors: production systems for phototrophic microorganisms[J]. Applied microbiology and biotechnology, 2001, 57(3): 287-293. DOI: 10.1007/ s002530100702. [17] TREDICI M R, MATERASSI R.From open ponds to vertical alveolar panels: the italian experience in the development of reactors for the mass cultivation of phototrophic microorganisms[J]. Journal of applied phycology, 1992, 4(3): 221-231. DOI: 10.1007/BF02161208. [18] LIU T Z, WANG J F, HU Q, et al.Attached cultivation technology of microalgae for efficient biomass feedstock production[J]. Bioresource technology, 2013, 127: 216-222. DOI: 10.1016/j.biortech.2012.09.100. [19] SHEN Y, ZHANG H, XU X, et al.Biofilm formation and lipid accumulation of attached culture of Botryococcus braunii[J]. Bioprocess and biosystems engineering, 2015, 38(3): 481-488. DOI: 10.1007/s00449-014-1287-1. [20] PEREZGARCIA O, ESCALANTE F M, Debashan L E, et al.Heterotrophic cultures of microalgae: metabolism and potential products[J]. Water research, 2011, 45(1): 11-36. DOI:10.1016/j.watres.2010.08.037. [21] WU Z Y, SHI X M.Optimization for high-density cultivation of heterotrophic Chlorella based on a hybrid neural network model[J]. Letters in applied microbiology, 2007, 44(1): 13-18. DOI: 10.1111/j.1472-765X.2006.02038.x. [22] ZHU L D, TAKALA J, HILTUNEN E, et al.Recycling harvest water to cultivate Chlorella zofingiensis under nutrient limitation for biodiesel production[J]. Bioresource technology, 2013, 144: 14-20. DOI: 10.1016/j.biortech.2013.06.061. [23] QIN L, WANG Z M, SUN Y M, et al.Microalgae consortia cultivation in dairy wastewater to improve the potential of nutrient removal and biodiesel feedstock production[J]. Environmental science and pollution research, 2016, 23(9): 8379-8387. DOI: 10.1007/s11356-015-6004-3. [24] 张文文, 褚华强, 周雪飞, 等. 废水处理与微藻培养耦合技术研究进展[J]. 现代化工, 2018, 38(1): 53-57. DOI: 10.16606/j.cnki.issn0253-4320.2018.01.012. [25] SHEN Y, YANG T, ZHU W, et al.Wastewater treatment and biofuel production through attached culture of Chlorella vulgaris in a porous substratum biofilm reactor[J]. Journal of applied phycology, 2017, 29(2): 833-841. DOI: 10.1007/s10811-016-0981-6. [26] AMER L, ADHIKARI B, PELLEGRINO J.Technoeconomic analysis of five microalgae-to-biofuels processes of varying complexity[J]. Bioresource technology, 2011, 102(20): 9350-9359. DOI: 10.1016/j.biortech.2011.08.010. [27] BARROS A I, GONÇALVES A L, SIMÕES M, et al. Harvesting techniques applied to microalgae: A review[J]. Renewable and sustainable energy reviews, 2015, 41: 1489-1500. DOI: 10.1016/j.rser.2014.09.037. [28] 郭锁莲, 赵心清, 白凤武. 微藻采收方法的研究进展[J]. 微生物学通报, 2015, 42(4): 721-728. DOI: 10.13344/j.microbiol.china.140577. [29] 张芳, 程丽华, 徐新华, 等. 能源微藻采收及油脂提取技术[J]. 化学进展, 2012, 24(10): 2062-2072. [30] 蒋晓菲, 周红茹, 金青哲, 等. 微藻油脂制取技术的研究进展[J]. 中国油脂, 2012, 37(10): 62-66. DOI: 10.3969/j.issn.1003-7969.2012.10.016. [31] MULBRY W, KONDRAD S, BUYER J, et al.Optimization of an oil extraction process for algae from the treatment of manure effluent[J]. Journal of the American oil chemists’ society, 2009, 86(9): 909-915. DOI: 10.1007/s11746-009-1432-1. [32] PAN Y, ALAM M A, WANG Z M, et al.One-step production of biodiesel from wet and unbroken microalgae biomass using deep eutectic solvent[J]. Bioresource technology, 2017, 238: 157-163. DOI: 10.1016/j.biortech.2017.04.038. [33] 程霜, 崔庆新, 刘敏. 螺旋藻油的超临界提取及GC/MS分析[J]. 食品工业科技, 2001, 22(5): 8-10. DOI: 10.3969/j.issn.1002-0306.2001.05.011. [34] CHISTI Y.Biodiesel from microalgae[J]. Biotechnology advances, 2007, 25(3): 294-306. DOI: 10.1016/j.biotechadv. 2007.02.001. [35] WILLIAMS P J L B, LAURENS L M L. Microalgae as biodiesel & biomass feedstocks: Review & analysis of the biochemistry, energetics & economics[J]. Energy & environmental science, 2010, 3(5): 554-590. DOI: 10.1039/B924978H. [36] SHIRAZI H M, KARIMI-SABET J, GHOTBI C.Biodiesel production from Spirulina microalgae feedstock using direct transesterification near supercritical methanol condition[J]. Bioresource technology, 2017, 239: 378-386. DOI: 10.1016/j.biortech.2017.04.073. [37] 庞通, 刘建国, 林伟, 等. 藻类生物燃料乙醇制备的研究进展[J]. 渔业现代化, 2012, 39(5): 63-71. DOI: 10.3969/j.issn.1007-9580.2012.05.013. [38] JOHN R P, ANISHA G S, NAMPOOTHIRI K M, et al.Micro and macroalgal biomass: A renewable source for bioethanol[J]. Bioresource technology, 2011, 102(1): 186-193. DOI: 10.1016/j.biortech.2010.06.139. [39] RAHEEM A, PRINSEN P, VUPPALADADIYAM A K, et al.A review on sustainable microalgae based biofuel and bioenergy production: recent developments[J]. Journal of cleaner production, 2018, 181:42-59. [40] AIKAWA S, JOSEPH A, YAMADA R, et al.Direct conversion of Spirulina to ethanol without pretreatment or enzymatic hydrolysis processes[J]. Energy & environmental science, 2013, 6(6):1844-1849. DOI: 10.1039/c3ee40305j. [41] CANTRELL K B, DUCEY T, RO K S, et al.Livestock waste-to-bioenergy generation opportunities[J]. Bioresource technology, 2008, 99(17): 7941-7953. DOI: 10.1016/j. biortech.2008.02.061. [42] ZHU L D, YAN C, LI Z H.Microalgal cultivation with biogas slurry for biofuel production[J]. Bioresource technology, 2016, 220: 629-636. DOI: 10.1016/j.biortech.2016.08.111. [43] HIDAKA T, INOUE K, SUZUKI Y, et al.Growth and anaerobic digestion characteristics of microalgae cultivated using various types of sewage[J]. Bioresource technology, 2014, 170: 83-89. DOI: 10.1016/j.biortech.2014.07.061. [44] 李晓姝, 王领民, 师文静, 等. 微藻制备生物油的研究进展[J]. 精细与专用化学品, 2011, 19(10): 33-36. DOI: 10.3969/j.issn.1008-1100.2011.10.015. [45] JENA U, DAS K C.Comparative evaluation of thermochemical Liquefaction and Pyrolysis for bio-oil production from microalgae[J]. Energy & fuels, 2011, 25(11): 5472-5482. DOI: 10.1021/ef201373m. [46] MIAO X L, WU Q Y, YANG C Y.Fast pyrolysis of microalgae to produce renewable fuels[J]. Journal of analytical and applied pyrolysis, 2004, 71(2): 855-863. DOI: 10.1016/j.jaap.2003.11.004. [47] BARREIRO D L, PRINS W, RONSSE F, et al.Hydrothermal liquefaction (HTL) of microalgae for biofuel production: State of the art review and future prospects[J]. Biomass and bioenergy, 2013, 53: 113-127. DOI: 10.1016/j.biombioe.2012.12.029. [48] XU L X, BRILMAN D W F W, WITHAG J A M, et al. Assessment of a dry and a wet route for the production of biofuels from microalgae: Energy balance analysis[J]. Bioresource technology, 2011, 102(8): 5113-5122. DOI: 10.1016/j.biortech.2011.01.066. [49] 杨巧利, 杨建强, 马欣欣, 等. 微藻水热液化工艺研究进展[J]. 安徽农业科学, 2015, 43(24): 385-388. DOI: 10.3969/j.issn.0517-6611.2015.24.138. [50] BILLER P, ROSS A B.Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content[J]. Bioresource technology, 2011, 102(1): 215-225. DOI: 10.1016/j.biortech.2010.06.028. [51] BROWN T M, DUAN P G, SAVAGE P E.Hydrothermal liquefaction and gasification of Nannochloropsis sp.[J]. Energy & fuels, 2010, 24(6): 3639-3646. DOI: 10.1021/ ef100203u. [52] CHAKRABORTY M, MIAO C, MCDONALD A, et al.Concomitant extraction of bio-oil and value added polysaccharides from Chlorella sorokiniana using a unique sequential hydrothermal extraction technology[J]. Fuel, 2012, 95: 63-70. DOI: 10.1016/j.fuel.2011.10.055. [53] DU Z Y, LI Y C, WANG X Q, et al.Microwave-assisted pyrolysis of microalgae for biofuel production[J]. Bioresource Technology, 2011, 102(7): 4890-4896. DOI: 10.1016/j.biortech.2011.01.055. [54] CHEN Y, WU Y L, ZHANG P L, et al.Direct liquefaction of Dunaliella tertiolecta for bio-oil in sub/ supercritical ethanol water[J]. Bioresource technology, 2012, 124: 190-198. DOI: 10.1016/j.biortech.2012.08.013.