
过冷法海水冰浆制备系统能耗特性分析
Energy Consumption Characteristics Analysis of Seawater Ice Slurry Generation System Using Supercooling Method
海水制冰浆技术可应用于海岛及海上风电的负荷转移和削峰以及冷冻保存海产品等,具有广阔应用前景。此外,海水制冰的原料近乎免费,并且利用海水作为冷却介质可以降低冷凝温度,进而提高系统能效,具有明显优势。通过建立双回路单级压缩循环制冰系统模型,分析利用过冷法制取海水冰浆的经济性和可行性,为海水制冰浆技术的实际应用提供理论指导。结果显示,该系统在计算条件下冬季循环性能系数平均值为4.76,夏季平均值为3.61,在蒸发器内较宽的海水流速范围内可维持较长时间正常运行。系统采用板式水冷冷凝器,并与空气源机组进行定量对比,结果表明循环机组采用水冷冷凝器在各指定工况点下的效益均高于采用空冷器,在设计工况下水冷机组单位投资蓄冷量为2.85 kW∙h/元,对应的空冷机组仅为1.37 kW∙h/元。
Technology for producing ice slurry from seawater can be applied to the load shifting and peak shaving for island and offshore wind power, as well as to freeze and preserve seafood, which has broad application prospects. In addition, the source material for producing ice slurry from seawater is virtually cost-free, and its use as a cooling medium enables reduce condensation temperatures, thereby increasing system energy efficiency, so there are distinct advantages. The economy and feasibility of using the supercooling method to produce seawater ice slurry are analyzed by modeling a single-stage compression cycle ice production system with a double loop, which provides theoretical guidance for the practical application of technology for producing ice slurry from seawater. The results suggest that under the calculated conditions the average coefficient of performance of the system is 4.76 in winter and 3.61 in summer, which can maintain normal operation for a long time in a wide range of flow speeds. The system uses a plate-type water-cooled condenser, and the quantitative comparison with air source system suggests that the efficiency of water-cooled system is higher than that of air-cooled system at the concerning operating point, and the cool-storage capacity per unit investment is 2.85 kW∙h/yuan for water-cooled units at design conditions, corresponding to only 1.37 kW∙h/yuan for air-cooled units.
冰浆 / 海水 / 过冷法 / 双回路单级压缩制冷循环 / 板式换热器 / 效率 {{custom_keyword}} /
ice slurry / seawater / supercooling method / double-loop single-stage compression refrigeration cycle / plate heat exchanger / efficiency {{custom_keyword}} /
表1 水平波纹形式板式换热器板片参数Table 1 Plate parameters of horizontal corrugated form plate heat exchanger |
参数/单位 | 数值 |
---|---|
板间距/mm | 4.8 |
流道宽度/mm | 430 |
板片厚度/mm | 1.2 |
换热面积/m2 | 0.52 |
板材导热系数/[W/(m2∙℃)] | 14.4 |
表2 东海夏季和冬季海水、空气数据Table 2 Seawater and air data of the East China Sea in summer and winter |
参数/单位 | 数值 |
---|---|
平均水温/℃ | 27.6(夏) |
19.3(冬) | |
平均气温/℃ | 28.6(夏) |
15.6(冬) | |
盐度/‰ | 31 ~ 32 |
冰点/℃ | -1.83 |
出水温度/℃ | -3.33 |
表3 空气冷却器水平式低翅片换热管参数Table 3 Air cooler horizontal low-fin heat exchanger tube parameters |
参数/单位 | 数值 |
---|---|
管根数/根 | 34 |
管排数/排 | 4 |
管内径/cm | 2 |
管外径/cm | 2.5 |
管长/m | 4.5 |
管材导热系数/[W/(m2∙℃)] | 30 |
表4 两种机组初投资成本明细Table 4 Breakdown of initial investment costs for both units |
机组 | 设备费/万元 | 安装费/万元 | 总价/万元 |
---|---|---|---|
空冷机组 | 16 | 1.6 | 17.6 |
水冷机组 | 18 | 1.8 | 19.8 |
表5 不同制冷量条件下两种机组的运营成本Table 5 Operating costs of both units with different cooling capacities |
机组 | 运营成本/(万元/a) | ||||
---|---|---|---|---|---|
40 kW | 80 kW | 120 kW | 160 kW | 200 kW | |
空冷机组 | 7.87 | 18.76 | 35.10 | 60.64 | 110.00 |
水冷机组 | 6.52 | 14.10 | 22.53 | 31.70 | 41.77 |
表6 不同制冷量条件下两种机组的首年单位投资蓄冷量Table 6 Cool-storage capacity per unit investment in the first year of both units with different cooling capacities |
机组 | 单位投资蓄冷量/(kW∙h/元) | ||||
---|---|---|---|---|---|
40 kW | 80 kW | 120 kW | 160 kW | 200 kW | |
空冷机组 | 1.38 | 1.93 | 2.00 | 1.79 | 1.37 |
水冷机组 | 1.33 | 2.07 | 2.48 | 2.72 | 2.85 |
[1] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |