木屑颗粒燃料冷态压缩成型参数试验研究
收稿日期: 2014-11-17
修回日期: 2014-11-26
网络出版日期: 2015-02-13
Experimental Study on the Molding Properties of Cold Compress Molding for Sawdust Pellet Fuel
Received date: 2014-11-17
Revised date: 2014-11-26
Online published: 2015-02-13
对杉木屑进行不同成型直径、含水率及压缩速度条件下的冷态压缩成型试验,分析多个影响因素对木屑成型试样的松弛密度、抗压强度及比能耗的影响。通过单因素影响试验分析表明,在含水率为16%和成型直径为10 ~ 12 mm时能获得较好的成型参数,压缩速度为40 mm/min时,可获得较大的松弛密度和抗压强度,但比能耗相对较大。通过设计三因素三水平正交试验,运用多指标综合加权评分法对试验结果进行分析,权重系数综合考虑松弛密度、抗压强度和比能耗的重要与次要程度,结果表明:木屑最佳成型因素水平组合为成型直径10 mm、含水率16%、压缩速度40 mm/min,此时木屑试样松弛密度、抗压强度和比能耗分别为0.91 g/cm3、315 N和30.20 J/g,综合加权评分值最高。
马爱纯 , 陈宗威 , 欧俭平 , 魏永春 . 木屑颗粒燃料冷态压缩成型参数试验研究[J]. 新能源进展, 2015 , 3(1) : 7 -13 . DOI: 10.3969/j.issn.2095-560X.2015.01.002
A cold compression molding experiment for the sawdust of cedarwood was conducted. The influences of different molding diameter, moisture content and compression speed on the relaxation density, compressive strength and energy consumption per unit mass of the molded samples were analyzed. It shows that the three molding properties are reasonable when the moisture content is 16% and the molding diameter is 10 ~ 12 mm. When the compression speed is 40 mm/min, large relaxation density and compressive strength can be obtained, though the energy consumption per unit mass is relatively higher. An orthogonal experiment of 3 factors with 3 levels was conducted. The multi-index synthetic weighted mark method is adopted to analyze the experimental results, in which the weight coefficients are determined according to the significance. It shows that the optimal scheme is as followed: molding diameter of 10 mm, moisture content of 16% and compression speed of 40 mm/min, while the relaxation density, compressive strength and energy consumption per unit mass of the product are 0.91 g/cm3, 315 N and 30.20 J/g respectively and the synthetic weighted mark is the highest.
[1] 陈汉平, 李斌, 杨海平, 等. 生物质燃烧技术现状与展望[J]. 工业锅炉, 2009, (5): 1-7.
[2] 胡建军, 雷廷宙, 何晓峰, 等. 小麦秸秆颗粒燃料冷态压缩成型参数实验研究[J]. 太阳能学报, 2008, 29(2): 241-245.
[3] 孙桂涛. 生物质冷态固化成型试验研究[D]. 哈尔滨: 哈尔滨理工大学, 2012.
[4] 刘丽媛. 生物质成型工艺及其燃烧性能试验研究与分析[D]. 济南: 山东大学, 2012.
[5] 盛奎川, 钱湘群, 吴杰. 切碎棉杆高密度压缩成型的试验研究[J]. 浙江大学学报(农业与生命科学版), 2003, 29(2): 139-142.
[6] 侯鹏程, 武佩, 马彦华. 生物质固体燃料固化成型影响因素分析[J]. 农业技术与装备, 2013, (258): 4-6.
[7] Kaliyan N, Morey R V. Factors affecting strength and durability of densified biomass products[J]. Biosystems Engineering, 2009, 33(3): 337-359.
[8] 李在峰, 胡建军, 何晓峰, 等. 生物质冷态压缩特性曲线分析[J]. 可再生能源, 2008, 26(4): 52-55.
[9] 董磊, 盖超, 董玉平. 生物质液压成型影响因素分析[J]. 农业机械学报, 2011, 42(7): 139-143.
[10] Felfli F F, Mesa J M, Rocha J D, et al. Biomass briquetting and its perspectives in Brazil[J]. Biomass and Bioenergy, 2011, 35: 236-242.
[11] 李大中, 李晓江. 木屑、稻壳和煤混合型煤压缩成型过程建模与工况优化[J]. 农业机械学报, 2012, 43(4): 82-87.
[12] 张永亮, 赵立欣, 姚宗路, 等. 生物质固体成型燃料燃烧颗粒物的数量和质量分布特性[J]. 农业工程学报, 2013, 29(19): 185-191.
[13] Panwar V, Prasad B, Wasewar K L. Biomass residue briquetting and characterization[J]. J. Energy Eng, 2011, 137: 108-114.
[14] 中国科学院数学研究所物理统计组. 正交实验法[M]. 北京: 人民教育出版社, 1975.
[15] DB11/T 541-2008, 生物质成型燃料[S]. 北京.
/
〈 |
|
〉 |