欢迎访问《新能源进展》官方网站!今天是
论文

聚胺水基钻井液中天然气水合物生成过程实验研究

  • 徐永霞 ,
  • 何 勇 ,
  • 梁德青 ,
  • 唐翠萍
展开
  • 1. 中国科学院广州能源研究所,广州 510640;
    2. 中国科学院大学,北京 100049
徐永霞(1988-),女,硕士研究生,研究方向天然气水合物与化学反应工程。

收稿日期: 2014-09-28

  修回日期: 2014-12-04

  网络出版日期: 2015-02-13

基金资助

国家自然科学基金(41406103);
国家海洋地质专项项目(GHZ2012006003);
中国科学院重点部署项目(KGZD-EW-301)

Experimental Study on Methane Hydrate Formation from Water-based Drilling Fluid

  • XU Yong-xia ,
  • HE Yong ,
  • LIANG De-qing ,
  • TANG Cui-ping
Expand
  • 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2014-09-28

  Revised date: 2014-12-04

  Online published: 2015-02-13

摘要

实验采用定容压力搜索法测量了聚胺钻井液在3℃ ~ 13℃范围内甲烷水合物的三相平衡条件。定容条件下考察了在初始压力分别为8 MPa、10 MPa、12 MPa条件下聚胺钻井液中甲烷水合物的生成过程。结果表明,聚胺钻井液对甲烷水合物生成的热力学抑制作用并不明显。同时,提高反应的初始压力会显著缩短水合物的生成时间、增加水合物的生成总量、增大反应初期生长速率以及水合物生长的不均匀性。强化聚胺钻井液的传热传质速率并降低钻探时的井下压力有利于抑制钻井液中水合物的生成。

本文引用格式

徐永霞 , 何 勇 , 梁德青 , 唐翠萍 . 聚胺水基钻井液中天然气水合物生成过程实验研究[J]. 新能源进展, 2015 , 3(1) : 47 -52 . DOI: 10.3969/j.issn.2095-560X.2015.01.008

Abstract

 The three phase equilibrium conditions of methane hydrate from water-based drilling fluid were measured ranging from 3oC to 13oC by isochoric pressure-search method. The methane hydrate formation from water-based drilling fluid was carried out under isochoric conditions with an initial pressure of 8 MPa, 10 MPa and 12 MPa respectively. Results showed that the inhibition effect of water-based drilling fluid on methane hydrate was not obvious thermodynamically. Meanwhile, increasing the initial pressure could greatly reduce the hydrate formation time, increase the production and initial hydrate growth rate and spoil the homogenous hydrate growth in liquid bulk. Strengthening the heat and mass transfer in water-based drilling fluid and lowering the pressure in drilling site would be useful to inhibit the hydrate growth.

参考文献

[1] Watson P, Kolstad E, Borstmayer R, et al. An innovative approach to development drilling in the deepwater Gulf of Mexico[R]. SPE 79809, 2003.

[2] Ghajari M P, Sabkdost A, Soghondikolaee H T. Hydrate-Related Drilling Hazards and Their Remedies[J]. 2nd National Iranian Conference on Gas Hydrate, Semnan University, 2014.

[3] Amodu A A. Drilling through gas hydrate formations: Possible problems and suggested solutions[D]. Texas A&M University, 2008.

[4] Barker J W, Gomez R K. Formation of hydrates during deepwater drilling operations[J]. Journal of Petroleum Technology, 1989, 41(3): 297-301.

[5] Østergaard K K, Tohidi B, Danesh A, et al. Gas hydrates and Offshore Drilling: Predicting the Hydrate Free Zone[J]. Annals new york academy of sciences, 2006, 912(1): 411-419.

[6] Grauls D. Gas hydrate: importance and application in petroleum exploration[J]. Marine and Petroleum Geology, 2001, 18(4): 519-523.

[7] Hege E, Yousif M. Hydrate Control during Deep Water Drilling:Overview and New Drilling Fluids Formulations[J]. SPE 38567, 1997.

[8] Caenn R, George V. Chillingar. Drilling fluids: State of the art[J]. Journal of Petroleum Science and Engineering, 1996, 14(3/4): 221-230.

[9] 蒋国盛, 施建国, 张昊, 等. 海底天然气水合物地层钻探甲酸盐钻井液实验[J]. 地球科学−中国地质大学学报, 2009, 34(6): 1025-1029.

[10] Donham F, Young S. High Performance Water Based Drilling Fluids Design[R]. Offshore Mediterranean Conference and Exhibition, 2009-3.

[11] 赵欣, 邱正松, 石秉忠, 等. 深水聚胺高性能钻井液实验研究[J]. 石油钻探技术, 2013, 41(3): 35-39.

[12] Qu Y Z, Lai X Q, Lai F Z, et al. Polyoxyalkyleneamine as shale inhibitor in water-based drilling fluids[J]. Applied Clay Science, 2009, 44(3/4): 265-268.

[13] Marin J U, Shah F, Serrano M A, et al. First deepwater well successfully drilled in Colombia with a high performance water-based drilling fluid[R]. SPE 120768, 2009.

[14] Tumba K, Hashemi H, Naidoo P, et al. Phase Equilibria of Clathrate Hydrate of Ethyne + Propane[J]. Journal of chemical engineering data, 2014, 59(9): 2914-2919.

[15] Mohammadi A H, Richon D. Phase Equilibria of Semi-Clathrate Hydrates of Tetra-n-butylammonium Bromide + Hydrogen Sul?de and Tetra-n-butylammonium Bromide + Methane[J]. Industrial & Engineering Chemistry, 2010, 55(2): 982-984.

[16] Shi L L, Liang D Q, Li D L. Phase equilibrium conditions for simulated land?ll gas hydrate formation in aqueous solutions of tetrabutylammonium nitrate[J]. J. Chem. Thermodynamics, 2014, (68): 322-326.

[17] Herzhaft B, Dalmazzone C. Gas Hydrate Formation in Drilling Mud Characterized With DSC Technique[J]. SPE 71379, 2001.

[18] Ning F L, Zhang L, Tu Y Z, et al. Gas-hydrate formation, agglomeration and inhibition in oil-based drilling fluids for deep-water drilling[J]. Journal of Natural Gas Chemistry, 2010, 19(3): 234-240.

[19] 周雪冰, 陈玉凤, 易莉芝, 等. CH4−CO2混合气体水合物生成过程[J]. 石油化工, 2013, (5): 479-482.

[20] Ding Y P, Robinson D B. A New Two-Constant Equation of State[J]. Industrial & Engineering Chemistry, 1976, 15(1): 59-64.

[21] Nasrifar K, Bolland O. Prediction of thermodynamic properties of natural gas mixtures using 10 equations of state including a new cubic two-constant equation of state[J]. Journal of Petroleum Science & Engineering, 2006, 51(3/4): 253-266.

[22] Farzaneh G M, Rahbari H R. Numerical procedures for natural gas accurate thermodynamic properties calculation[J]. Journal of engineering thermophysics, 2012, 21(4): 213-234.

[23] Sloan E D, Koh C A. Clathrate Hydrates of Natural Gases[M]. New York: Marcel Dekker, 2008: 567-569.

[24] Zhou X T, Fan S S, Liang D Q, et al. Determination of appropriate condition on replacing methane from hydrate with carbon dioxide[J]. Energy conversion and Management, 2008, 49: 2124-2129.

[25] He Y Y, Rudolpha E S J, Zitha P L J,et al. Kinetics of CO2 and methane hydrate formation: An experimental analysis in the bulk phase[J]. Fuel, 2011, 90: 272-279.

[26] Herri J M, Pic J S, Gruy F, et al. Methane hydrate crystallization mechanism from in-situ particle sizing[J]. Aiche Journal, 1999, 45(3): 590-602.

[27] Herri J M, Gruy F, Pic J S, et al. Interest of in situ turbidimetry for the characterization of methane hydrate crystallization: Application to the kinetic inhibitors[J]. Chemical Engineering Science, 1999, 54(12): 1849-1858.

文章导航

/