[1] Wada M. Research and development of electric vehicles for clean transportation[J]. Journal of Environmental Sciences, 2009, 21(6): 745-749.
[2] Andersen P H, Mathews J A, Rask M. Integrating private transport into renewable energy policy: The strategy of creating intelligent recharging grids for electric vehicles[J]. Energy Policy, 2009, 37(7): 2481-2486.
[3] Eaves S, Eaves J. A cost comparison of fuel-cell and battery electric vehicles[J]. Journal of Power Sources, 2004, 130(1): 208-212.
[4] Chau K T, Wong Y S, Chan C C. An overview of energy sources for electric vehicles[J]. Energy Conversion and Management, 1999, 40(10): 1021-1039.
[5] Wang Q, Ping P, Zhao X, et al. Thermal runaway caused fire and explosion of lithium ion battery[J]. Journal of Power Sources, 2012, 208: 210-224.
[6] Pesaran A A. Battery Thermal management in EVs and HEVs: Issues and Solutions[C]//Advanced Automotive Battery Conference, Nevada, 2001.
[7] Pesaran A, Vlahinos A, Stuart T. Cooling and Preheating of Batteries in Hybrid Electric Vehicles[C]//The 6th ASME-JSME Thermal Engineering Joint Conference, Hawaii, 2003.
[8] 霍宇涛, 饶中浩, 刘新健, 等. 基于液体介质的电动汽车动力电池热管理研究进展[J]. 新能源进展, 2014, 2(2): 135-140.
[9] 张国庆, 马莉, 张海燕. HEV电池的产热行为及电池热管理技术[J]. 广东工业大学学报, 2008, 25(1): 1-4.
[10] Xun J, Liu R, Jiao K. Numerical and analytical modeling of lithium ion battery thermal behaviors with different cooling designs[J]. Journal of Power Sources, 2013, 233: 47-61.
[11] Zhang S S, Xu K, Jow T R. The low temperature performance of Li-ion batteries[J]. Journal of Power Sources, 2003, 115(1): 137-140.
[12] Zhang X, Kong X, Li G, et al. Thermodynamic assessment of active cooling/heating methods for lithium-ion batteries of electric vehicles in extreme conditions[J]. Energy, 2014, 64: 1092-1101.
[13] Ji Y, Wang C Y. Heating strategies for Li-ion batteries operated from subzero temperatures[J]. Electrochimica Acta, 2013, 107: 664-674.
[14] 王发成, 张俊智, 王丽芳. 车载动力电池组用空气电加热装置设计[J]. 电源技术, 2013, (07): 1184-1187.
[15] Rao Z, Wang S, Zhang G. Simulation and experiment of thermal energy management with phase change material for ageing LiFePO4 power battery[J]. Energy Conversion and Management, 2011, 52(12): 3408-3414.
[16] Rao Z, Wang S. A review of power battery thermal energy management[J]. Renewable and Sustainable Energy Reviews, 2011, 15(9): 4554-4571.
[17] 饶中浩. 基于固液相变传热介质的动力电池热管理研究[D]. 广州: 华南理工大学, 2013.
[18] Duan X, Naterer G F. Heat transfer in phase change materials for thermal management of electric vehicle battery modules[J]. International Journal of Heat and Mass Transfer, 2010, 53(23-24): 5176-5182.
[19] Rao Z, Wang S, Zhang Y. Thermal Management with Phase Change Material for a Power Battery under Cold Temperatures[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2014, 36(20): 2287-2295.
[20] Pesaran A, Vlahinos A, Stuart T. Cooling and Preheating of Batteries in Hybrid Electric Vehicles[C]//Proceedings of the The 6th ASME-JSME Thermal Engineering Joint Conference, 2003: 1-7.
[21] Cosley M R, Garcia M P. Battery thermal management system[C]//Proceedings of the Telecommunications Energy Conference, 2004 INTELEC 2004 26th Annual International, 2004: 38-45.
[22] Hande A, Stuart T A. AC heating for EV/HEV Batteries[C]//Proceedings of the Power Electronics in Transportation, 2002: 119-124.
[23] Stuart T A, Hande A. HEV battery heating using AC currents[J]. Journal of Power Sources, 2004, 129(2): 368-378.
[24] Hande A. Internal battery temperature estimation using series battery resistance measurements during cold temperatures[J]. Journal of Power Sources, 2006, 158(2): 1039-1046.
[25] Hande A. A high frequency inverter for cold temperature battery heating[C]//Proceedings of the 2004 IEEE Workshop on Computers in Power Electronics, 2004: 215-222.
[26] 张承宁, 雷治国, 董玉刚. 电动汽车锂离子电池低温加热方法研究[J]. 北京理工大学学报, 2012, 39(09): 921-925.
[27] Lefebvre L. Smart Battery Thermal Management for PHEV Efficiency[J]. Oil & Gas Science and Technology–Revue d’IFP Energies nouvelles, 2013, 68(1): 149-164.
[28] Flipse J, Bakker F L, SlachterA, et al. Direct observation of the spin-dependent Peltier effect[J]. Nat Nano, 2012, 7(3): 166-168.
[29] Wijngaards D D L, Wolffenbuttel R F. Study on temperature stability improvement of on-chip reference elements using integrated Peltier coolers[J]. IEEE Transactions on Instrumentation and Measurement, 2003, 52(2): 478-482.
[30] Troxler Y, Wu B, Marinescu M, et al. The effect of thermal gradients on the performance of lithium-ion batteries[J]. Journal of Power Sources, 2014, 247: 1018-1025.
[31] Salameh Z M, Alaoui C. Modeling and simulation of a Thermal Management System for Electric Vehicles[C]// Proceedings of the Industrial Electronics Society, 2003 IECON '03: The 29th Annual Conference of the IEEE, 2003: 887-890.
[32] Alaoui C, Salameh Z M. A novel thermal management for electric and hybrid vehicles[J]. Vehicular Technology, IEEE Transactions on, 2005, 54(2): 468-476.
[33] Lee D Y, Cho C W, Won J P, et al. Performance characteristics of mobile heat pump for a large passenger electric vehicle[J]. Applied Thermal Engineering, 2013, 50(1): 660-669.
[34] 袁昊, 王丽芳, 王立业. 基于液体冷却和加热的电动汽车电池热管理系统[J]. 汽车安全与节能学报, 2012, 3(4): 371-380.