欢迎访问《新能源进展》官方网站!今天是
论文

工作温度对磷酸铁锂电池SOC影响及研究进展

  • 罗 玲 ,
  • 宋文吉 ,
  • 林仕立 ,
  • 吕 杰 ,
  • 陈永珍 ,
  • 冯自平
展开
  • 1. 中国科学院广州能源研究所,广州 510640;
    2. 中国科学院大学,北京 100049
罗 玲(1992-),女,硕士研究生,主要从事储电系统热管理控制研究。

收稿日期: 2014-11-06

  修回日期: 2014-12-31

  网络出版日期: 2015-02-13

基金资助

国家自然科学基金(51206175;51477171)

Research Progress on Effects of Temperature on SOC and Its Estimation for LFP Battery

  • LUO Ling ,
  • SONG Wen-ji ,
  • LIN Shi-li ,
  • LV Jie ,
  • CHEN Yong-zhen ,
  • FENG Zi-ping
Expand
  • 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2014-11-06

  Revised date: 2014-12-31

  Online published: 2015-02-13

摘要

储能电池在新能源并网、新能源汽车等产业领域发挥着重要作用,为了对电池进行有效地控制与管理,需要配备必要的电池管理系统,电池荷电状态(SOC)是其中最为重要的一环。磷酸铁锂(LiFePO4,LFP)电池SOC与多个影响因素密切相关,呈强非线性,本文重点归纳温度对磷酸铁锂电池SOC的影响。首先将工作温度对开路电压、实际容量、充放电效率、自放电率及电池老化等电池特性的影响进行归纳总结,随后通过对工作温度的影响规律进行分析、总结和归纳,基于经典“开路电压 + 安时积分”法将温度参数直接或间接引入到SOC的实时估算模型中,得到考虑温度参数的新模型,进而提高电池SOC的估算精度。

本文引用格式

罗 玲 , 宋文吉 , 林仕立 , 吕 杰 , 陈永珍 , 冯自平 . 工作温度对磷酸铁锂电池SOC影响及研究进展[J]. 新能源进展, 2015 , 3(1) : 59 -69 . DOI: 10.3969/j.issn.2095-560X.2015.01.010

Abstract

 In order to effectively control and manage the battery energy storage system (BESS), which plays more and more important roles in new energy integration and reducing environmental pollution, it is necessary to develop battery management system (BMS) to achieve a high performance of BESS. As an important parameter, the state of charge (SOC) of Li-ion battery has been researched widely nowadays, aiming to improve the estimation accuracy. LiFePO4 (LFP) battery  has a prospective value in various applications and its SOC is closely related to multiple factors. The relationships between temperature and several characteristics of battery, such as the open circuit voltage, charge-discharge efficiency, nominal capacity and self-discharge rate, are introduced in this paper. Based on the conclusions and summaries above, the temperature parameters were introduced to the SOC estimation model directly or indirectly in real time, the estimation accuracy of SOC would be improved significantly by considering the effects of temperature.

参考文献

[1] Geng B, Mills J K, Sun D. Energy management control of microturbine-powered plug-in hybrid electric vehicles using the telemetry equivalent consumption minimization strategy[J]. Int J Vehicular Technology IEEE Transactions on, 2011, 60(9): 4238-4248.

[2] 周玲, 黄勇, 郭珂, 等. 微电网储能技术研究综述[J]. 电力系统保护与控制, 2011, 39(7): 147-152.

[3] Meissner E, Richter G. Battery Monitoring and Electrical Energy Management Precondition for Future Vehicle Electric Power Systems[J]. Journal of Power sources, 2003, 116(1/2): 79-98.

[4] Park K B, Kim C E, Moon G W, et al. A New High Efficiency PWM Single-Switch Isolated Converter[J]. Journal of Power Electronics, 2007, 7(4): 301-309.

[5] Ball R J, Kurian R, Evans R, et al. Failure mechanisms in valve regulated lead/acid batteries for cyclic application[J]. Journal of Power Sources, 2002, 109(1): 189-202.

[6] Piller S, Perrin M, Jossen A. Methods for state-of-charge determination and their applications[J]. Journal of Power sources, 2001, 96: 113-120.

[7] 张菊秀, 全书海, 刘倩. 基于CAN总线的蓄电池SOC动态测量系统[J]. 微计算机信息, 2006, 22(5): 108-109.

[8] 彭金春, 陈全世, 韩曾晋. 电动汽车铅酸电池充放电过程建模[J]. 汽车技术, 1997, 6: 5-8.

[9] 张艳辉. 大容量磷酸铁锂电池智能荷电状态估算方法研究[D]. 合肥: 中国科学院大学, 2014. 12-16.

[10] Lu R, Wang T, Feng F, et al. SOC Estimation Based on the Model of Ni-MH Battery Dynamic Hysteresis Characteristic[C]. The 25th world Battery, Hybrid and Fuel Cell Electric Vehicle Symposium &Exhibition(EVS25), Shenzhen, China. Nov. 5-9, 2010: 2278-2282.

[11] Zhao L W, Zhou M J, Doi T, et al. Thermal characteristics of nongraphitizable carbon negative electrodes with electrolyte in Li-ion batteries[J]. Electrochimica Acta, 2009, 55(1): 125-130.

[12] 李秀亮. 电动车用锂离子电池组的监测与SOC估算研究[D]. 哈尔滨: 哈尔滨工业大学, 2011. 10-15.

[13] Wenzl H, Baring-Gould I, Kaiser R, et al. Life prediction of batteries for selecting the technically most suitable and cost effective battery[J]. Journal of Power Sources, 2005, 144(2): 373-384.

[14] Roscher M A, Sauer D U. Dynamic electric behavior and open circuit voltage modeling of LiFePO4 Based lithium ion secondary batteries[J]. Journal of Power Sources, 2011, 196(1): 331-336.

[15] Plett G L. Sigma-point Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part1: Introduction and state estimation[J]. Journal of Power Sources, 2006, 161(2): 1356-1368.

[16] Zhang Y H, Song W J, Lin S L, et al. A critical Review on state of charge of batteries[J]. Journal of Renewable and Sustainable Energy, 2013, 75: 117-148.

[17] Maleki H, Al Hallaj S, Selman J R, et al. Thermal Properties of lithium-ion Batteries and Components[J]. Journal of the Electrochemical Society, 1999, 146(3): 947-954.

[18] Thomas K E, Bogatu C, Newman J. Measurement of the Entropy of Reaction as a Function of State of Charge in Doped and Undoped Lithium Manganese Oxide[J]. Journal of the Electrochemical Society, 2001, 148(6): A570-A575.

[19] Dupre N, Martin J F, Degryse J, et al. Aging of the LiFePO4 Positive Electrode Interface in Electrolyte[J]. Journal of Power Sources, 2010, 195: 7415-7425.

[20] 李哲, 韩雪冰, 卢兰光, 等. 动力型磷酸铁锂电池的温度特性[J]. 机械工程学报, 2011, 47(18): 114-120.

[21] 李哲, 仝猛, 卢兰光, 等. 动力型铅酸及LiFePO4锂离子电池的容量特性[J]. 电池, 2009, 39(1): 26-28.

[22] Lee S H, Huq A, Manthiram A. Understanding the effect of synthesis temperature on the structural and electrochemical characteristics of layered-spinel composite cathodes for lithium-ion batteries[J]. Journal of Power Sources, 2013, 240: 193-203.

[23] Cho H M, Choi W S, Go J Y, et al. A study on time-dependent low temperature power performance of a lithium ion battery[J]. Journal of Power Sources, 2012, 198(15): 273-280.

[24] Kim K M, Ly N V, Won J H, et al. Improvement of lithium-ion battery performance at low temperature by adopting polydimethylsiloxane-based electrolyte additives[J]. Electrochimica Acta, 2014, 136: 182-188.

[25] Smart M C, Ratnakumar B V, Whitacre J F, et al. Effect of electrolyte type upon the high-temperature resilience of lithium-ion cells[J]. Journal of the Electrochemical Society, 2005, 152(6): A1096-A1104.

[26] Huang C K, Sakamoto J S, Wolfenstine J, et al. The limits of low-temperature performance of Li-ion cells[J]. Electrochem Society, 2000, 147: 2893-2898.

[27] Wang C S, Appleby A J, Little F E. Low-temperature characterization of lithium-ion carbon anode via micro perturbation measurement[J]. Electrochem Society, 2002, 149: A754-A760.

[28] Zhang S S, Xu K, Jow T R. The low temperature Performance of Li-ion batteries[J]. Journal of Power Sources, 2003, l(15): 137-140.

[29] 宋作玉. LiFePO4锂离子电池低温性能研究[D]. 上海: 华东理工大学, 2012. 15-30.

[30] Takahashi M, Tobishima S, Takei K, et al. Reaction Behavior of LiFePO4 as a cathode material for rechargeable lithium ion batteries[J]. Solid State Ionics, 2002, 148(3): 283-289.

[31] 冯娜. 锂电池化成过程中的热效应分析及散热结构设计[D]. 上海: 东华大学, 2014. 20-46.

[32] 沈帅. 纯电动汽车电池箱热特性研究及电池箱热管理系统开发[D]. 长春: 吉林大学, 2012. 21-43.

[33] Mills A, Al-Hallaj S. Simulation of passive thermal management system for lithium-ion battery packs[J]. Journal of Power Sources, 2005, 141: 307-315.

[34] 张彩萍, 张承宁, 李军求. 电传动装甲车辆用锂离子电池充放电特性[J]. 电源技术, 2010, 134(2): 109-112.

[35] 谷亦杰, 孙先富, 李兆龙, 等. 10 Ah LiFePO4锂离子电池高低温性能研究[J]. 电池工业, 2009, 14(4): 223-226.

[36] 于洋. 动力锂电池荷电状态估计策略的研究[D]. 天津: 天津理工大学, 2011. 16-18.

[37] 和晓念. 锂电池荷电状态预测方法研究[D]. 新乡: 河南师范大学, 2012. 20-24.

[38] Onda K, Kameyama H, Hanamoto T, et al. Experimental Study on Heat Generation Behavior of Small Lithium-Ion Secondary Batteries[J]. Journal of The Electrochemical Society, 2003, 150(3): A285-A291.

[39] 雷治国, 张承宁, 董玉刚, 等. 电动汽车用锂离子电池低温性能和加热方法[J]. 北京工业大学学报, 2013, 39(9): 1400-1404.

[40] Utsunomiya T, Hatozaki O, Yoshimoto N, et al. Self-discharge behavior and its temperature dependence of carbon electrodes in Lithium-ion battery[J]. Journal of Power Sources, 2011, 196: 8598-8603.

[41] Thomas E V, Case H L, Doughty D H. Accelerated power degradation of Li-ion cells[J]. Journal of Power Sources, 2003, 124(1): 254- 260.

[42] Bodenes L, Naturel R, Martinez H, et al. Lithium secondary Batteries working at very high temperature: Capacity fade and understanding of aging mechanisms[J]. Journal of Power Sources, 2013, 236: 265-275.

[43] Waldmann T, Wilka M, Kasper M, et al. Temperature dependent ageing mechanisms in Lithium-ion batteries Post-Mortem study[J]. Journal of Power Sources, 2014, 262: 129-135.

[44] 华周发, 李静. 电动汽车动力电池SOC估算方法综 述[J]. 电源技术, 2013, 37(9): 1686-1689.

[45] Plett G L. Extended Kalman filtering for battery management systems of LiPB-based HEV batterypacks: Part1: Background[J]. Journal of Power sources, 2004, 134: 252-261.

[46] Caumont O, Le Moigne P, Rombaut C, et al. Energy gauge for lead-acid batteries in electric vehicles[J]. IEEE Transactions on Energy Conversion, 2000, 15(3): 354-360.

[47] Ciglioli R, Pelacchi P, Raugi M, et al. A state of charge observer for lead-acid batteries[J]. Energia Elettrica, 1988, 65: 27-33.

[48] Alzieua J, Smimiteb H, Glaizeb C. Improvement of intelligent battery controller: state-of-charge indicator and associated functions[J]. Journal of Power Sources, 1997, 67(12): 157-161.

[49] Vasebi A, Partovibakhsh M, Bathaee S. A novel combined battery model for state-of-charge estimation in lead-acid batterues based on extended Kalman filter for hybrid electric vehicle application[J]. Journal of Power Sources, 2007, 174(1): 157-161.

[50] 时玮, 姜久春, 李索宇, 等. 磷酸铁锂电池SOC估算方法研究[J]. 电子测量与仪器学报, 2010, 24(8): 769-774.

[51] 骆晶. MH/Ni动力电池SOC估算方法研究及实现[D]. 湘潭: 湘潭大学, 2012. 38-52.

[52] Liu X T, Chen Z H, Zhang C B, et al. A novel temperature-compensated model for power Li-ion batteries with dual-particle-filter state of charge estimation[J]. Applied Energy, 2014, 123: 263-272.

[53] Zhang S S, Xu K, Allen J L, et al. Effect of propylene carbonate on the low temperature performance of Li-ion cells[J]. Journal of Power Sources, 2002, 110(1): 216-221.

[54] Jansen A N, Dees D W, Abraham D P, et al. Low-temperature study of lithium-ion cells using a LiySn micro-reference electrode[J]. Journal of Power Sources, 2007, 174(2): 373-379.

[55] 候幽明. 纯电动汽车用磷酸铁锂电池SOC估算的研 究[D]. 芜湖: 安徽工程大学, 2011. 27-33.

[56] 方佩敏. 新型磷酸铁锂动力电池[J]. 今日电子, 2007, 9: 95-98.

[57] 高玉京, 陈全世, 林成涛, 等. 电动汽车用聚合物锂离子蓄电池充放电性能[J]. 电源技术, 2006, 7: 39-542.

文章导航

/