欢迎访问《新能源进展》官方网站!今天是
论文

富含碳水化合物微藻的筛选、鉴定及其在不同氮浓度条件下的产糖分析

展开
  • 1. 中国科学院广州能源研究所,中国科学院可再生能源重点实验室,广州510640;                              
    2. 中国科学院大学,北京 100049  
肖仕圆(1988-),男,硕士研究生,主要从事生物质能源生化转化技术研究。

收稿日期: 2015-07-13

  修回日期: 2015-08-27

  网络出版日期: 2015-10-30

基金资助

国家高技术研究发展计划(863计划, 2013AA065803);
国家自然科学基金(2117623,21211140237);
广东省科技攻关项目(2013B010403021);
广州市科技攻关项目(2013J4300026

Screening and Identification of Carbohydrate-rich Microalgae and Carbohydrate Production under Different Concentrations of Nitrogen

Expand
  • 1. Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2015-07-13

  Revised date: 2015-08-27

  Online published: 2015-10-30

摘要

以实验室保存的4株藻株为研究对象,分析了它们的生长速率和淀粉等糖类的含量,其中1株富含碳水化合物的微藻 #3,其生长速率和淀粉含量分别可达0.086 g/(L•d) 和225.2 mg/L。18S rDNA聚类分析表明,其属于栅藻科链带藻属Desmodesmus sp。缺N条件下,微藻生长速率慢,总糖积累快;而在其他不同N浓度条件下,生长速率趋势一致,总糖积累速度不尽相同。

关键词: 微藻; 18S rDNA; 总糖

本文引用格式

肖仕圆,许敬亮,袁 涛,赵 月,吴 浩,李谢昆,袁振宏 . 富含碳水化合物微藻的筛选、鉴定及其在不同氮浓度条件下的产糖分析[J]. 新能源进展, 2015 , 3(5) : 340 -345 . DOI: 10.3969/j.issn.2095-560X.2015.05.004

Abstract

The growth rate and starch content of four strains of microalgae preserved in our laboratory were analyzed. A carbohydrate-rich microalgae #3, as one of the four, was screened. Its growth rate and starch content could attain to 0.086 g/(L•d) and 225.2 mg/L, respectively. Further, microalgae #3 was identified as Desmodesmus sp. based on 18s rDNA cluster analysis. The growth rate of Desmodesmus sp. #3 was low and the total sugar accumulation was fast when cultured without adding nitrogen. The growth rate change at different nitrogen concentration was almost similar, but total sugar accumulation speed presented different change tendency.

参考文献

[1] NEIL S. The ideal biofuel[J]. Nature, 2011, 474: 9-11.

[2] 郭美华, 杜宝杰. 乙醇汽油混合燃料的燃烧和排放特点分析[J]. 叉车技术, 2010, 33(2): 22-26.

[3] SMITH V H, STUM B S M, DENOYELLES F J, et al. The ecology of algal biodiesel production[J]. Trends in Ecology & Evolution, 2010, 25(5): 301-309.

[4] COSTA J A, DE MORAIS M G. The role of biochemical engineering in the production of biofuels from microalgae[J]. Bioresour Technol, 2011, 102(1): 2-9.

[5] DAROCH M, GENG S, WANG G. Recent advances in liquid biofuel production from algal feedstocks[J]. Applied Energy, 2013, 102: 1371-1381.

[6] LI X, HU H, GAN K, et al. Effect of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalgae Scenedesmus sp[J]. Bioresource Technology, 2010, 101: 5494-5500.

[7] WOOD A M, EVERROAD R C, Wingard L M. Measuring growth rates in microalgal cultures[J]. Algal culturing techniques, 2005: 269-286.

[8] YOO C, JUN S Y, LEE J Y, et al. Selection of microalgae for lipid production under high levels carbon dioxide[J]. Bioresour Technol, 2010, 101: 71-74.

[9] DE MORAIS M G, COSTA J A V. Carbon dioxide fixation by Chlorella kessleri, C.vulgaris,Scenedesmus obliquus and Spirulina sp. cultivated in flasks and vertical tubularphotobioreactors[J]. Biotechnology Letters, 2007, 29: 1349-1352.

[10] RICHMOND A. Handbook of Microalgal Culture: Biotechnology and Applied Phycology[M]. Blackwell, 2004.

[11] 季方, 郝睿, 刘颖, 等. 一株高生物量链带藻分离筛选与培养条件优化[J]. 农业机械学报, 2013, 45(2): 149-154.

[12] 张蕾, 胡光荣, 范勇, 等. 高产油突变藻株 Desmodesmus sp. D90G-19 的光合作用特征[J]. 海洋科学, 2013, 11(37): 21-26.

[13] 尤珊, 郑必胜, 郭祀远. 氮源对螺旋藻生长及胞外多糖的影响[J]. 食品科学, 2004, 25(4): 32-35.

[14] LIN Q, LIN J. Effects of nitrogen source and concentration on biomass and oil production of a Scenedesmus rubescens like microalga[J]. Bioresour Technol, 2011, 102: 1615-1621.

文章导航

/