欢迎访问《新能源进展》官方网站!今天是
论文

动力锂离子电池正极材料磷酸铁锂的研究进展

  • 杜江 ,
  • 张正富 ,
  • 彭金辉 ,
  • 韩亚梅 ,
  • 王杰祥 ,
  • 傅梦笔
展开
  • 1. 昆明理工大学,材料科学与工程学院,昆明 660093; 2. 微波能工程应用及装备技术国家地方联合工程实验室,昆明 650093;3. 昆明理工大学,非常规冶金教育部重点实验室,昆明 650093
杜 江(1988-),男,硕士研究生,主要从事能源材料及锂离子电池材料研究。

收稿日期: 2013-09-29

  修回日期: 2013-12-12

  网络出版日期: 2013-12-27

基金资助

国家自然科学基金联合基金重点支持项目(U1202272)

Research Progresses of Power Lithium Ion Batteries LiFePO4 as the Cathode Materials

  • DU Jiang ,
  • ZHANG Zheng-fu ,
  • PENG Jin-hui ,
  • HAN Ya-mei ,
  • WANG Jie-xiang ,
  • FU Meng-bi
Expand
  • 1. Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China; 2. National Local Joint Engineering Laboratory of Engineering Applications of Microwave Energy and Equipment Technology, Kunming 650093, China; 3. Key Laboratory of Unconventional Metallurgy, Ministry of education, Kunming University of Science and Technology, Kunming 650093, China

Received date: 2013-09-29

  Revised date: 2013-12-12

  Online published: 2013-12-27

摘要

磷酸铁锂具有价廉、环保、热稳定性好等优点,是理想的锂离子动力电池正极材料之一,因此受到行业的广泛关注。本文阐述了磷酸铁锂的结构和性能特点,介绍了磷酸铁锂的制备方法和研究新进展,基于目前研究现状讨论了存在的问题。

本文引用格式

杜江 , 张正富 , 彭金辉 , 韩亚梅 , 王杰祥 , 傅梦笔 . 动力锂离子电池正极材料磷酸铁锂的研究进展[J]. 新能源进展, 2013 , 1(3) : 263 -268 . DOI: 10.3969/j.issn.2095-560X.2013.03.010

Abstract

LiFePO4 has the advantages of low price, environmental protection and good thermal stability. It is one of the ideal cathode materials for lithium ion power battery, which therefore attracted extensive concern of the industry. In this paper, the structure and performance characteristics of LiFePO4 are elaborated and the preparation methods and research progress of lithium iron phosphate are introduced. Finally, the existing problems are discussed based on the present study.

参考文献

[1] MacNeil D D, Dahn J R. The reaction of charged cathodes with nonaqueous solvents and electrolytes: I. Li0.5CoO2[J]. J. Electrochem. Soc, 2001, 148(11): A1205-A1210.

[2] Padhi A K, Nanjundaswamy K S, Goodenough J B. Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries[J]. J. Electrochem. Soc, 1997, 144(4): 1188-1194.

[3] Chung S Y, Bloking J T, Chiang Y M. Electronically conductive phospho-olivines as lithium storage electrodes[J]. Nature materials, 2002, 1(2): 123-128.

[4] Tang X C, Li L X, Lai Q L, et al. Investigation on diffusion behavior of Li+ in LiFePO4 by capacity intermittent titration technique (CITT)[J]. Electrochem. Acta, 2009, 54: 2329-2334.

[5] Howell D, Duong T, Deppe J B, et al. US Department of Energy’s Materials Research for Advanced Lithium Ion Batteries[J]. Material Matters, 2008, 3(4): 100-102.

[6] 邵劲松, 李琪, 乔庆东. 大功率电池材料LiFePO4的研究进展[J]. 化工科技, 2011, 19(6): 74-79.

[7] Yamada A, Hosoya M, Chung S C, et al. Olivine-type cathodes: achievements and problems[J]. J. Power Sources, 2003, 119: 232-238.

[8] Padhi A K, Nanjundaswamy K S, Masquelier C, et al. Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates[J]. J. Electrochem. Soc, 1997, 144(5): 1609- 1613.

[9] Ravet N, Goodenough J B, Besner S, et al. Improved iron based cathode material[C]. Proceedings of the 196th ECS meeting, Honolulu, extended abstract. 1999: 127.

[10] Wang Y, He P, Zhou H. Olivine LiFePO4: development and future[J]. Energy Environ. Sci, 2011, 4(3): 805-817.

[11] Takahashi M, Tobishima S, Takei K, et al. Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteries[J]. Solid State Ionics, 2002, 148(3): 283-289.

[12] Andersson A S, Thomas J O. The source of first-cycle capacity loss in LiFePO4[J]. J. Power Sources, 2001, 97: 498-502.

[13] Gaberscek M, Dominko R, Jamnik J. Is small particle size more important than carbon coating? An example study on LiFePO4 cathodes[J]. Electrochem. Commun, 2007, 9(12): 2778-2783.

[14] Salah A A, Mauger A, Julien C M, et al. Nano-sized impurity phases in relation to the mode of preparation of LiFePO4[J]. Mater. Sci. Eng B, 2006, 129(1): 232-244.

[15] Herle P S, Ellis B, Coombs N, et al. Nano-network electronic conduction in iron and nickel olivine phosphates[J]. Nature materials, 2004, 3(3): 147-152.

[16] 黄学杰. 锂离子电池正极材料磷酸铁锂研究进展[J]. 电池工业, 2004, 9(4): 176-180.

[17] Han Y, Zhang Z, Zhang L, et al. Influence of carbon coating prepared by microwave pyrolysis on properties of LiNi1/3Mn1/3Co1/3O2. Transactions of Nonferrous Metals Society of China, 2013, 23(10): 2971-2976.

[18] 甘晖, 郭婧文, 连锦明. 溶剂热合成磷酸亚铁锂的研究[J]. 分子科学学报, 2007, 23(5): 358-362.

[19] 甘晖, 童庆松, 汪冰冰, 等. 由PAA-Li 制 LiFePO4/C 及其充放电性能与容量损失[J]. 应用化学, 2006, 23(2): 179-183.

[20] Hu Z Q, Yang D X, Yin K J, et al. The Effect of Lithium Source on the Electrochemical Performance of LiFePO4/C Cathode Materials Synthesized by Sol-Gel Method[J]. Advanced Materials Research, 2013, 669: 311-315.

[21] Zhao X, Baek D H, Manuel J, et al. Electrochemical properties of magnesium doped LiFePO4 cathode material prepared by sol–gel method[J]. Mater. Res. Bull, 2012, 47(10): 2819-2822.

[22] Wang S, Yang H, Feng L, et al. A simple and inexpensive synthesis route for LiFePO4/C nanoparticles by co-precipitation[J]. J. Power Sources, 2013, 233: 43-46.

[23] Lv Y, Wang L X, Lu D, et al. Synthesis of LiFePO4 by Co-Precipitation and Optimization of its Performance[J]. Key Engineering Materials, 2012, 519: 132-136.

[24] Kim K, Kam D, Kim Y, et al. Electrochemical Studies of Molybdate-Doped LiFePO4 as a Cathode Material in Li-Ion Batteries[J]. Journal of Nanoscience and Nanotechnology, 2013, 13(5): 3383-3386.

[25] Yin X, Huang K, Liu S, et al. Preparation and characterization of Na-doped LiFePO4/C composites as cathode materials for lithium-ion batteries[J]. J. Power Sources, 2010, 195(13): 4308-4312.

[26] 常美娟, 陈梅蓉, 韩铭, 等. 掺钴对富锂磷酸亚铁锂大电流放电性能的影响[J]. 吉林化工学院学报, 2012, 29(1): 4-8.

[27] 王圣平, 董康, 周权, 等. 掺杂Ni, Mn 和 Cu 对磷酸铁锂电化学性能的影响[J]. 硅酸盐学报, 2011, 39(8): 1275-1280.

[28] Moretti A, Giuli G, Nobili F, et al. Structural and Electrochemical Characterization of Vanadium-Doped LiFePO4 Cathodes for Lithium-Ion Batteries[J]. J. Electrochem. Soc, 2013, 160(6): A940-A949.

[29] George Ting-Kuo Fey, Bo-Fu Chang, Yung-Da Cho, et al. Electrochemical and Physical Properties of La-Ion-Doped LiFePO4 Coated with Different Carbon Sources as Cathode Materials for Lithium-ion Batteries[C]. Electrochem. Soc, 223rd ECS Meeting, 2013.

[30] Kulka A, Baster D, Dudek M, et al. Electrochemical properties of chemically modified phosphoolivines as cathode materials for Li-ion batteries[J]. J. Power Sources, 2013, 244: 565-569.

[31] Wang Y, Wang J, Yang J, et al. High-Rate LiFePO4 Electrode Material Synthesized by a Novel Route from FePO4•4H2O[J]. Adv. Funct. Mater, 2006, 16(16): 2135-2140.

[32] Beninati S, Damen L, Mastragostino M. MW-assisted synthesis of LiFePO4 for high power applications[J]. J. Power Sources, 2008, 180(2): 875-879.

[33] Ravet N, Gauthier M, Zaghib K, et al. Mechanism of the Fe3+ reduction at low temperature for LiFePO4 synthesis from a polymeric additive[J]. Chem. Mater, 2007, 19(10): 2595-2602.

[34] Wang L, Liang G C, Ou X Q, et al. Effect of synthesis temperature on the properties of LiFePO4/C composites prepared by carbothermal reduction[J]. J. Power sources, 2009, 189(1): 423-428.

[35] Hong S A, Kim S J, Kim J, et al. Carbon coating on lithium iron phosphate (LiFePO4): Comparison between continuous supercritical hydrothermal method and solid-state method[J]. Chemical Engineering Journal, 2012, 198:318-326.

[36] Sun X, Sun K, Wang Y, et al. Scale-up synthesis, Structure Characterization and Electrochemical Characteristics of C-LiFePO4 Nanocomposites for Lithium Ion Rechargeable Batteries[J]. Int. J. Electrochem. Sci, 2013, 8: 12816-12836.

[37] Liu Q B, Liao S J, Song H Y, et al. High-performance LiFePO4/C materials: Effect of carbon source on microstructure and performance [J]. J. Power Sources, 2012, 211: 52-58.

[38] Wang J, Yang J, Tang Y, et al. Surface aging at olivine LiFePO4: a direct visual observation of iron dissolution and the protection role of nano-carbon coating[J]. J. Mater. Chem. A, 2013, 1(5): 1579-1586.

[39] Cui Y, Zhao X, Guo R. Enhanced electrochemical properties of LiFePO4 cathode material by CuO and carbon co-coating[J]. J. Alloys Compd, 2010, 490(1): 236-240.

[40] Kim C W, Park J S, Lee K S. Effect of Fe2P on the electron conductivity and electrochemical performance of LiFePO4 synthesized by mechanical alloying using Fe3+ raw material[J]. J. power sources, 2006, 163(1): 144-150.

[41] Liu H, Wang G X, Wexler D, et al. Electrochemical performance of LiFePO4 cathode material coated with ZrO2 nanolayer[J]. Electrochem. commun, 2008, 10(1): 165-169.

[42] Yao J, Wu F, Qiu X, et al. Effect of CeO2-coating on the electrochemical performances of LiFePO4/C cathode material[J]. Electrochim. Acta, 2011, 56(16): 5587-5592.

[43] Song G M, Wu Y, Xu Q, et al. Enhanced electrochemical properties of LiFePO4 cathode for Li-ion batteries with amorphous NiP coating[J]. J. Power Sources, 2010, 195(12): 3913-3917.

[44] Lou X, Zhang Y. Synthesis of LiFePO4/C cathode materials with both high-rate capability and high tap density for lithium-ion batteries[J]. J. Mater. Chem, 2011, 21(12): 4156-4160.

[45] Liu X, Yan P, Xie Y Y, et al. Synthesis of Superior Fast Charging/Discharging Nano-LiFePO4/C from Nano-FePO4 Generated with a Confined Area Impinging Jet Reactor Approach[J]. Chem. Commun, 2013, 49: 5396-5398

[46] Li M, Sun L, Sun K, et al. Synthesis of nano-LiFePO4 particles with excellent electrochemical performance by electrospinning-assisted method[J]. J. Solid State Electrochem, 2012, 16(11): 3581-3586.

[47] Danoue K, Inoue T, Fujimoto M. Presented at the 45th Battery Symposium, Kyoto, Japan, November 2004.

[48] Zhang S S, Xu K, Jow T R. An improved electrolyte for the LiFePO4 cathode working in a wide temperature range[J]. J. power sources, 2006, 159(1): 702-707.

[49] Wang W, Choi D, Yang Z. Li-Ion Battery with LiFePO4 Cathode and Li4Ti5O12 Anode for Stationary Energy Storage[J]. Metall. Mater. Trans. A, 2013, 44(1): 21-25.

[50] Cui W, He Y B, Tang Z Y, et al. Improvement of overcharge performance using Li4Ti5O12 as negative electrode for LiFePO4 power battery[J]. J. Solid State Electrochem, 2012, 16(1): 265-271.

[51] Liu Y, Gorgutsa S, Santato C, et al. Flexible, Solid Electrolyte-Based Lithium Battery Composed of LiFePO4 Cathode and Li4Ti5O12 Anode for Applications in Smart Textiles[J]. J. Electrochem. Soc, 2012, 159(4): A349-A356.

[52] Lai C Y, Xu J J, Wei Y F. Study on the Solid Electrolyte Interface at the Surface of Anode Electrode in Li4Ti5O12/LiFePO4 Battery System[J]. Adv. Mater. Research, 2012, 347: 3522-3526.

 
文章导航

/