[1] MacNeil D D, Dahn J R. The reaction of charged cathodes with nonaqueous solvents and electrolytes: I. Li0.5CoO2[J]. J. Electrochem. Soc, 2001, 148(11): A1205-A1210.
[2] Padhi A K, Nanjundaswamy K S, Goodenough J B. Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries[J]. J. Electrochem. Soc, 1997, 144(4): 1188-1194.
[3] Chung S Y, Bloking J T, Chiang Y M. Electronically conductive phospho-olivines as lithium storage electrodes[J]. Nature materials, 2002, 1(2): 123-128.
[4] Tang X C, Li L X, Lai Q L, et al. Investigation on diffusion behavior of Li+ in LiFePO4 by capacity intermittent titration technique (CITT)[J]. Electrochem. Acta, 2009, 54: 2329-2334.
[5] Howell D, Duong T, Deppe J B, et al. US Department of Energy’s Materials Research for Advanced Lithium Ion Batteries[J]. Material Matters, 2008, 3(4): 100-102.
[6] 邵劲松, 李琪, 乔庆东. 大功率电池材料LiFePO4的研究进展[J]. 化工科技, 2011, 19(6): 74-79.
[7] Yamada A, Hosoya M, Chung S C, et al. Olivine-type cathodes: achievements and problems[J]. J. Power Sources, 2003, 119: 232-238.
[8] Padhi A K, Nanjundaswamy K S, Masquelier C, et al. Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates[J]. J. Electrochem. Soc, 1997, 144(5): 1609- 1613.
[9] Ravet N, Goodenough J B, Besner S, et al. Improved iron based cathode material[C]. Proceedings of the 196th ECS meeting, Honolulu, extended abstract. 1999: 127.
[10] Wang Y, He P, Zhou H. Olivine LiFePO4: development and future[J]. Energy Environ. Sci, 2011, 4(3): 805-817.
[11] Takahashi M, Tobishima S, Takei K, et al. Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteries[J]. Solid State Ionics, 2002, 148(3): 283-289.
[12] Andersson A S, Thomas J O. The source of first-cycle capacity loss in LiFePO4[J]. J. Power Sources, 2001, 97: 498-502.
[13] Gaberscek M, Dominko R, Jamnik J. Is small particle size more important than carbon coating? An example study on LiFePO4 cathodes[J]. Electrochem. Commun, 2007, 9(12): 2778-2783.
[14] Salah A A, Mauger A, Julien C M, et al. Nano-sized impurity phases in relation to the mode of preparation of LiFePO4[J]. Mater. Sci. Eng B, 2006, 129(1): 232-244.
[15] Herle P S, Ellis B, Coombs N, et al. Nano-network electronic conduction in iron and nickel olivine phosphates[J]. Nature materials, 2004, 3(3): 147-152.
[16] 黄学杰. 锂离子电池正极材料磷酸铁锂研究进展[J]. 电池工业, 2004, 9(4): 176-180.
[17] Han Y, Zhang Z, Zhang L, et al. Influence of carbon coating prepared by microwave pyrolysis on properties of LiNi1/3Mn1/3Co1/3O2. Transactions of Nonferrous Metals Society of China, 2013, 23(10): 2971-2976.
[18] 甘晖, 郭婧文, 连锦明. 溶剂热合成磷酸亚铁锂的研究[J]. 分子科学学报, 2007, 23(5): 358-362.
[19] 甘晖, 童庆松, 汪冰冰, 等. 由PAA-Li 制 LiFePO4/C 及其充放电性能与容量损失[J]. 应用化学, 2006, 23(2): 179-183.
[20] Hu Z Q, Yang D X, Yin K J, et al. The Effect of Lithium Source on the Electrochemical Performance of LiFePO4/C Cathode Materials Synthesized by Sol-Gel Method[J]. Advanced Materials Research, 2013, 669: 311-315.
[21] Zhao X, Baek D H, Manuel J, et al. Electrochemical properties of magnesium doped LiFePO4 cathode material prepared by sol–gel method[J]. Mater. Res. Bull, 2012, 47(10): 2819-2822.
[22] Wang S, Yang H, Feng L, et al. A simple and inexpensive synthesis route for LiFePO4/C nanoparticles by co-precipitation[J]. J. Power Sources, 2013, 233: 43-46.
[23] Lv Y, Wang L X, Lu D, et al. Synthesis of LiFePO4 by Co-Precipitation and Optimization of its Performance[J]. Key Engineering Materials, 2012, 519: 132-136.
[24] Kim K, Kam D, Kim Y, et al. Electrochemical Studies of Molybdate-Doped LiFePO4 as a Cathode Material in Li-Ion Batteries[J]. Journal of Nanoscience and Nanotechnology, 2013, 13(5): 3383-3386.
[25] Yin X, Huang K, Liu S, et al. Preparation and characterization of Na-doped LiFePO4/C composites as cathode materials for lithium-ion batteries[J]. J. Power Sources, 2010, 195(13): 4308-4312.
[26] 常美娟, 陈梅蓉, 韩铭, 等. 掺钴对富锂磷酸亚铁锂大电流放电性能的影响[J]. 吉林化工学院学报, 2012, 29(1): 4-8.
[27] 王圣平, 董康, 周权, 等. 掺杂Ni, Mn 和 Cu 对磷酸铁锂电化学性能的影响[J]. 硅酸盐学报, 2011, 39(8): 1275-1280.
[28] Moretti A, Giuli G, Nobili F, et al. Structural and Electrochemical Characterization of Vanadium-Doped LiFePO4 Cathodes for Lithium-Ion Batteries[J]. J. Electrochem. Soc, 2013, 160(6): A940-A949.
[29] George Ting-Kuo Fey, Bo-Fu Chang, Yung-Da Cho, et al. Electrochemical and Physical Properties of La-Ion-Doped LiFePO4 Coated with Different Carbon Sources as Cathode Materials for Lithium-ion Batteries[C]. Electrochem. Soc, 223rd ECS Meeting, 2013.
[30] Kulka A, Baster D, Dudek M, et al. Electrochemical properties of chemically modified phosphoolivines as cathode materials for Li-ion batteries[J]. J. Power Sources, 2013, 244: 565-569.
[31] Wang Y, Wang J, Yang J, et al. High-Rate LiFePO4 Electrode Material Synthesized by a Novel Route from FePO4•4H2O[J]. Adv. Funct. Mater, 2006, 16(16): 2135-2140.
[32] Beninati S, Damen L, Mastragostino M. MW-assisted synthesis of LiFePO4 for high power applications[J]. J. Power Sources, 2008, 180(2): 875-879.
[33] Ravet N, Gauthier M, Zaghib K, et al. Mechanism of the Fe3+ reduction at low temperature for LiFePO4 synthesis from a polymeric additive[J]. Chem. Mater, 2007, 19(10): 2595-2602.
[34] Wang L, Liang G C, Ou X Q, et al. Effect of synthesis temperature on the properties of LiFePO4/C composites prepared by carbothermal reduction[J]. J. Power sources, 2009, 189(1): 423-428.
[35] Hong S A, Kim S J, Kim J, et al. Carbon coating on lithium iron phosphate (LiFePO4): Comparison between continuous supercritical hydrothermal method and solid-state method[J]. Chemical Engineering Journal, 2012, 198:318-326.
[36] Sun X, Sun K, Wang Y, et al. Scale-up synthesis, Structure Characterization and Electrochemical Characteristics of C-LiFePO4 Nanocomposites for Lithium Ion Rechargeable Batteries[J]. Int. J. Electrochem. Sci, 2013, 8: 12816-12836.
[37] Liu Q B, Liao S J, Song H Y, et al. High-performance LiFePO4/C materials: Effect of carbon source on microstructure and performance [J]. J. Power Sources, 2012, 211: 52-58.
[38] Wang J, Yang J, Tang Y, et al. Surface aging at olivine LiFePO4: a direct visual observation of iron dissolution and the protection role of nano-carbon coating[J]. J. Mater. Chem. A, 2013, 1(5): 1579-1586.
[39] Cui Y, Zhao X, Guo R. Enhanced electrochemical properties of LiFePO4 cathode material by CuO and carbon co-coating[J]. J. Alloys Compd, 2010, 490(1): 236-240.
[40] Kim C W, Park J S, Lee K S. Effect of Fe2P on the electron conductivity and electrochemical performance of LiFePO4 synthesized by mechanical alloying using Fe3+ raw material[J]. J. power sources, 2006, 163(1): 144-150.
[41] Liu H, Wang G X, Wexler D, et al. Electrochemical performance of LiFePO4 cathode material coated with ZrO2 nanolayer[J]. Electrochem. commun, 2008, 10(1): 165-169.
[42] Yao J, Wu F, Qiu X, et al. Effect of CeO2-coating on the electrochemical performances of LiFePO4/C cathode material[J]. Electrochim. Acta, 2011, 56(16): 5587-5592.
[43] Song G M, Wu Y, Xu Q, et al. Enhanced electrochemical properties of LiFePO4 cathode for Li-ion batteries with amorphous NiP coating[J]. J. Power Sources, 2010, 195(12): 3913-3917.
[44] Lou X, Zhang Y. Synthesis of LiFePO4/C cathode materials with both high-rate capability and high tap density for lithium-ion batteries[J]. J. Mater. Chem, 2011, 21(12): 4156-4160.
[45] Liu X, Yan P, Xie Y Y, et al. Synthesis of Superior Fast Charging/Discharging Nano-LiFePO4/C from Nano-FePO4 Generated with a Confined Area Impinging Jet Reactor Approach[J]. Chem. Commun, 2013, 49: 5396-5398
[46] Li M, Sun L, Sun K, et al. Synthesis of nano-LiFePO4 particles with excellent electrochemical performance by electrospinning-assisted method[J]. J. Solid State Electrochem, 2012, 16(11): 3581-3586.
[47] Danoue K, Inoue T, Fujimoto M. Presented at the 45th Battery Symposium, Kyoto, Japan, November 2004.
[48] Zhang S S, Xu K, Jow T R. An improved electrolyte for the LiFePO4 cathode working in a wide temperature range[J]. J. power sources, 2006, 159(1): 702-707.
[49] Wang W, Choi D, Yang Z. Li-Ion Battery with LiFePO4 Cathode and Li4Ti5O12 Anode for Stationary Energy Storage[J]. Metall. Mater. Trans. A, 2013, 44(1): 21-25.
[50] Cui W, He Y B, Tang Z Y, et al. Improvement of overcharge performance using Li4Ti5O12 as negative electrode for LiFePO4 power battery[J]. J. Solid State Electrochem, 2012, 16(1): 265-271.
[51] Liu Y, Gorgutsa S, Santato C, et al. Flexible, Solid Electrolyte-Based Lithium Battery Composed of LiFePO4 Cathode and Li4Ti5O12 Anode for Applications in Smart Textiles[J]. J. Electrochem. Soc, 2012, 159(4): A349-A356.
[52] Lai C Y, Xu J J, Wei Y F. Study on the Solid Electrolyte Interface at the Surface of Anode Electrode in Li4Ti5O12/LiFePO4 Battery System[J]. Adv. Mater. Research, 2012, 347: 3522-3526.