Advances in New and Renewable Energy >
Progress in One-Pot Catalytic Transformation of Cellulose into Valuable Chemicals
Received date: 2014-06-05
Revised date: 2014-07-09
Online published: 2014-08-30
Efficient transformation of cellulose into liquid fuels and chemicals is one key route for sustainable development of human society. With the chemical conversion, cellulose can be transformed to various small molecule organics, which are regarded as platform for production of liquid fuel or material. The progress in direct catalytic conversion of cellulose into valuable chemicals is reviewed in this paper, including preparation of 5-hydroxymethylfurfural (5-HMF), lactic acid, ethylene glycol, sorbitol and isosorbide. Finally, subsequent research topics on transformation of cellulose into valuable chemicals are prospected.
Key words: biomass; cellulose; 5-hydroxymethylfurfural (5-HMF); lactic acid; ethylene glycol; sorbitol; isosorbide
SHI Ning , LIU Qi-ying , WANG Tie-jun , ZHANG Qi , LIAO Yu-he , MA Long-long , CAI Chi-liu . Progress in One-Pot Catalytic Transformation of Cellulose into Valuable Chemicals[J]. Advances in New and Renewable Energy, 2014 , 2(4) : 245 -253 . DOI: 10.3969/j.issn.2095-560X.2014.04.001
[1] Verendel J J, Church T L, Andersson P G. Catalytic One- Pot Production of Small Organics from Polysaccharides[J]. Synthesis-Stuttgart, 2011, (11): 1649-1677.
[2] Zhang X, Tu M B, Paice M G. Routes to Potential Bioproducts from Lignocellulosic Biomass Lignin and Hemicelluloses[J]. Bioenergy Research, 2011, 4(4): 246-257.
[3] Mulhaupt R. Green Polymer Chemistry and Bio-based Plastics: Dreams and Reality[J]. Macromolecular Chemistry and Physics, 2013, 214(2): 159-174.
[4] Song J L, Fan H L, Ma J, et al. Conversion of glucose and cellulose into value-added products in water and ionic liquids[J]. Green Chemistry, 2013, 15(10): 2619-2635.
[5] Jin F M, Enomoto H. Rapid and highly selective conversion of biomass into value-added products in hydrothermal conditions: chemistry of acid/base-catalysed and oxidation reactions[J]. Energy & Environmental Science, 2011, 4(2): 382-397.
[6] Wang A Q, Zhang T. One-Pot Conversion of Cellulose to Ethylene Glycol with Multifunctional Tungsten-Based Catalysts[J]. Accounts of Chemical Research, 2013, 46(7): 1377-1386.
[7] Rasrendra C B, Fachri B A, Makertihartha I G B N, et al. Catalytic Conversion of Dihydroxyacetone to Lactic Acid Using Metal Salts in Water[J]. ChemSusChem, 2011, 4(6): 768-777.
[8] Zhao H B, Holladay J E, Brown H, et al. Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxy- methylfurfural[J]. Science, 2007, 316(5831): 1597-1600.
[9] Girisuta B, Janssen L P B M, Heeres H J. A kinetic study on the decomposition of 5-hydroxymethylfurfural into levulinic acid[J]. Green Chemistry, 2006, 8(8): 701-709.
[10] Verdeguer P, Merat N, Gaset A. Catalytic-Oxidation of Hmf to 2,5-Furandicarboxylic Acid[J]. Journal of Molecular Catalysis, 1993, 85(3): 327-344.
[11] Dumesic J A, Roman-Leshkov Y, Barrett C J, et al. Production of dimethylfuran for liquid fuels from biomass- derived carbohydrates[J]. Nature, 2007, 447(7147): 982-U985.
[12] Ma J P, Pang Y, Wang M, et al. The copolymerization reactivity of diols with 2,5-furandicarboxylic acid for furan-based copolyester materials[J]. Journal of Materials Chemistry, 2012, 22(8): 3457-3461.
[13] Rosatella A A, Simeonov S P, Frade R F M, et al. 5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications[J]. Green Chemistry, 2011, 13(4): 754-793.
[14] Saha B, Abu-Omar M M. Advances in 5-hydroxymethyl- furfural production from biomass in biphasic solvents[J]. Green Chemistry, 2014, 16(1): 24-38.
[15] Dutta S, Pal S. Promises in direct conversion of cellulose and lignocellulosic biomass to chemicals and fuels: Combined solvent-nanocatalysis approach for biorefinary[J]. Biomass & Bioenergy, 2014, 62: 182-197.
[16] Asghari F S, Yoshida H. Conversion of Japanese red pine wood (Pinus densiflora) into valuable chemicals under subcritical water conditions[J]. Carbohydrate Research, 2010, 345(1): 124-131.
[17] Zhao S, Cheng M X, Li J Z, et al. One pot production of 5-hydroxymethylfurfural with high yield from cellulose by a Bronsted-Lewis-surfactant-combined heteropolyacid catalyst[J]. Chemical Communications, 2011, 47(7): 2176-2178.
[18] Swatloski R P, Spear S K, Holbrey J D, et al. Dissolution of cellose with ionic liquids[J]. Journal of the American Chemical Society, 2002, 124(18): 4974-4975.
[19] Zavrel M, Bross D, Funke M, et al. High-throughput screening for ionic liquids dissolving (ligno-)cellulose[J]. Bioresource Technology, 2009, 100(9): 2580-2587.
[20] Yu S, Brown H M, Huang X W, et al. Single-step conversion of cellulose to 5-hydroxymethylfurfural (HMF), a versatile platform chemical[J]. Applied Catalysis a-General, 2009, 361(1/2): 117-122.
[21] Li C Z, Zhang Z H, Zhao Z B K. Direct conversion of glucose and cellulose to 5-hydroxymethylfurfural in ionic liquid under microwave irradiation[J]. Tetrahedron Letters, 2009, 50(38): 5403-5405.
[22] Yu H B, Wang P, Zhan S H, et al. Catalytic hydrolysis of lignocellulosic biomass into 5-hydroxymethylfurfural in ionic liquid[J]. Bioresource Technology, 2011, 102(5): 4179-4183.
[23] Ding Z D, Shi J C, Xiao J J, et al. Catalytic conversion of cellulose to 5-hydroxymethyl furfural using acidic ionic liquids and co-catalyst[J]. Carbohydrate Polymers, 2012, 90(2): 792-798.
[24] Binder J B, Raines R T. Simple Chemical Transformation of Lignocellulosic Biomass into Furans for Fuels and Chemicals[J]. Journal of the American Chemical Society, 2009, 131(5): 1979-1985.
[25] Yang Y, Hu C W, Abu-Omar M M. Conversion of carbohydrates and lignocellulosic biomass into 5-hydroxymethylfurfural using AlCl3•6H2O catalyst in a biphasic solvent system[J]. Green Chemistry, 2012, 14(2): 509-513.
[26] Shi N, Liu Q Y, Zhang Q, et al. High yield production of 5-hydroxymethylfurfural from cellulose by high concentration of sulfates in biphasic system[J]. Green Chemistry, 2013, 15(7): 1967-1974.
[27] Shi N, Liu Q Y, Ma L L, et al. Direct degradation of cellulose to 5-hydroxymethylfurfural in hot compressed steam with inorganic acidic salts[J]. Rsc Advances, 2014, 4(10): 4978-4984.
[28] Shi N, Liu Q Y, Wang T J, et al. One-Pot Degradation of Cellulose into Furfural Compounds in Hot Compressed Steam with Dihydric Phosphates[J]. Acs Sustainable Chemistry & Engineering, 2014, 2(4): 637-642.
[29] van Zandvoort I, Wang Y H, Rasrendra C B, v et al. Formation, Molecular Structure, and Morphology of Humins in Biomass Conversion: Influence of Feedstock and Processing Conditions[J]. ChemSusChem, 2013, 6(9): 1745-1758.
[30] Fan Y X, Zhou C H, Zhu X H. Selective Catalysis of Lactic Acid to Produce Commodity Chemicals[J]. Catalysis Reviews-Science and Engineering, 2009, 51(3): 293-324.
[31] 曹燕琳, 尹静波, 颜世峰. 生物可降解聚乳酸的改性及其应用研究进展[J]. 高分子通报, 2006, 10: 90-97.
[32] Yan X Y, Jin F M, Tohji K, et al. Hydrothermal Conversion of Carbohydrate Biomass to Lactic Acid[J]. Aiche Journal, 2010, 56(10): 2727-2733.
[33] Esposito D, Antonietti M. Chemical Conversion of Sugars to Lactic Acid by Alkaline Hydrothermal Processes[J]. ChemSusChem, 2013, 6(6): 989-992.
[34] Chambon F, Rataboul F, Pinel C, et al. Cellulose hydrothermal conversion promoted by heterogeneous Bronsted and Lewis acids: Remarkable efficiency of solid Lewis acids to produce lactic acid[J]. Applied Catalysis B-Environmental, 2011, 105(1/2): 171-181.
[35] Wang F F, Liu C L, Dong W S. Highly efficient production of lactic acid from cellulose using lanthanide triflate catalysts[J]. Green Chemistry, 2013, 15(8): 2091-2095.
[36] Wang Y L, Deng W P, Wang B J, et al. Chemical synthesis of lactic acid from cellulose catalysed by lead(II) ions in water[J]. Nature Communications, 2013, 4: 1-7.
[37] Tang Z C, Deng W P, Wang Y L, et al. Transformation of Cellulose and its Derived Carbohydrates into Formic and Lactic Acids Catalyzed by Vanadyl Cations[J]. ChemSusChem, 2014, 7(6): 1557-1567.
[38] 金栋, 崔小明. 我国乙二醇生产技术进展及市场分 析[J]. 精细与专用化学品, 2010, 18(5): 4-13.
[39] Zheng M Y, Pang J F, Wang A Q, et al. One-pot catalytic conversion of cellulose to ethylene glycol and other chemicals: From fundamental discovery to potential commercialization[J]. Chinese Journal of Catalysis, 2014, 35(5): 602-613.
[40] Ji N, Zhang T, Zheng M Y, et al. Direct Catalytic Conversion of Cellulose into Ethylene Glycol Using Nickel-Promoted Tungsten Carbide Catalysts[J]. Angewandte Chemie-International Edition, 2008, 47(44): 8510-8513.
[41] Zhang Y H, Wang A Q, Zhang T. A new 3D mesoporous carbon replicated from commercial silica as a catalyst support for direct conversion of cellulose into ethylene glycol[J]. Chemical Communications, 2010, 46(6): 862-864.
[42] Zheng M Y, Wang A Q, Ji N, et al. Transition Metal-Tungsten Bimetallic Catalysts for the Conversion of Cellulose into Ethylene Glycol[J]. ChemSusChem, 2010, 3(1): 63-66.
[43] Tai Z J, Zhang J Y, Wang A Q, et al. Temperature- controlled phase-transfer catalysis for ethylene glycol production from cellulose[J]. Chemical Communications, 2012, 48(56): 7052-7054.
[44] Tai Z J, Zhang J Y, Wang A Q, et al. Catalytic Conversion of Cellulose to Ethylene Glycol over a Low-Cost Binary Catalyst of Raney Ni and Tungstic Acid[J]. ChemSusChem, 2013, 6(4): 652-658.
[45] Liu Y, Luo C, Liu H C. Tungsten Trioxide Promoted Selective Conversion of Cellulose into Propylene Glycol and Ethylene Glycol on a Ruthenium Catalyst[J]. Angewandte Chemie-International Edition, 2012, 51(13): 3249-3253.
[46] Li C Z, Zheng M Y, Wang A Q, et al. One-pot catalytic hydrocracking of raw woody biomass into chemicals over supported carbide catalysts: simultaneous conversion of cellulose, hemicellulose and lignin[J]. Energy & Environmental Science, 2012, 5(4): 6383-6390.
[47] Pang J F, Zheng M Y, Wang A Q, et al. Catalytic Hydrogenation of Corn Stalk to Ethylene Glycol and 1,2-Propylene Glycol[J]. Industrial & Engineering Chemistry Research, 2011, 50(11): 6601-6608.
[48] Xiao Z, Jin S, Pang M, et al. Conversion of highly concentrated cellulose to 1,2-propanediol and ethylene glycol over highly efficient CuCr catalysts[J]. Green Chemistry, 2013, 15(4): 891-895.
[49] 王成福, 赵光辉, 孙鲁, 等. 功能糖醇的生产与应用[J]. 中国食品添加剂, 2012, S1: 182-186.
[50] Zhang J, Li J B, Wu S B, et al. Advances in the Catalytic Production and Utilization of Sorbitol[J]. Industrial & Engineering Chemistry Research, 2013, 52(34): 11799-11815.
[51] Fukuoka A, Dhepe P L. Catalytic conversion of cellulose into sugar alcohols[J]. Angewandte Chemie-International Edition, 2006, 45(31): 5161-5163.
[52] Luo C, Wang S A, Liu H C. Cellulose conversion into polyols catalyzed by reversibly formed acids and supported ruthenium clusters in hot water[J]. Angewandte Chemie-International Edition, 2007, 46(40): 7636-7639.
[53] Geboers J, Van de Vyver S, Carpentier K, et al. Efficient hydrolytic hydrogenation of cellulose in the presence of Ru-loaded zeolites and trace amounts of mineral acid[J]. Chemical Communications, 2011, 47(19): 5590-5592.
[54] Geboers J, Van de Vyver S, Carpentier K, et al. Efficient catalytic conversion of concentrated cellulose feeds to hexitols with heteropoly acids and Ru on carbon[J]. Chemical Communications, 2010, 46(20): 3577-3579.
[55] Geboers J, Van de Vyver S, Carpentier K, et al. Hydrolytic hydrogenation of cellulose with hydrotreated caesium salts of heteropoly acids and Ru/C[J]. Green Chemistry, 2011, 13(8): 2167-2174.
[56] Liu M, Deng W P, Zhang Q H, Wang Y L, et al. Polyoxometalate-supported ruthenium nanoparticles as bifunctional heterogeneous catalysts for the conversions of cellobiose and cellulose into sorbitol under mild conditions[J]. Chemical Communications, 2011, 47(34): 9717-9719.
[57] Zhu W W, Yang H M, Chen J Z, et al. Efficient hydrogenolysis of cellulose into sorbitol catalyzed by a bifunctional catalyst[J]. Green Chemistry, 2014, 16(3): 1534-1542.
[58] Xi J X, Zhang Y, Xia Q N, Liu X H, et al. Direct conversion of cellulose into sorbitol with high yield by a novel mesoporous niobium phosphate supported Ruthenium bifunctional catalyst[J]. Applied Catalysis a-General, 2013, 459: 52-58.
[59] Liang G F, Cheng H Y, Li W, et al. Selective conversion of microcrystalline cellulose into hexitols on nickel particles encapsulated within ZSM-5 zeolite[J]. Green Chemistry, 2012, 14(8): 2146-2149.
[60] Van de Vyver S, Geboers J, Dusselier M, et al. Selective Bifunctional Catalytic Conversion of Cellulose over Reshaped Ni Particles at the Tip of Carbon Nanofibers[J]. ChemSusChem, 2010, 3(6): 698-701.
[61] Pang J F, Wang A Q, Zheng M Y, et al. Catalytic conversion of cellulose to hexitols with mesoporous carbon supported Ni-based bimetallic catalysts[J]. Green Chemistry, 2012, 14(3): 614-617.
[62] Ding L N, Wang A Q, Zheng M Y, et al. Selective Transformation of Cellulose into Sorbitol by Using a Bifunctional Nickel Phosphide Catalyst[J]. ChemSusChem, 2010, 3(7): 818-821.
[63] Van de Vyver S, Geboers J, Schutyser W, et al. Tuning the Acid/Metal Balance of Carbon Nanofiber-Supported Nickel Catalysts for Hydrolytic Hydrogenation of Cellulose[J]. ChemSusChem, 2012, 5(8): 1549-1558.
[64] Hilgert J, Meine N, Rinaldi R, et al. Mechanocatalytic depolymerization of cellulose combined with hydrogenolysis as a highly efficient pathway to sugar alcohols[J]. Energy & Environmental Science, 2013, 6(1): 92-96.
[65] Rose M, Palkovits R. Isosorbide as a Renewable Platform chemical for Versatile Applications—Quo Vadis?[J]. ChemSusChem, 2012, 5(1): 167-176.
[66] Liang G F, Wu C Y, He L M, et al. Selective conversion of concentrated microcrystalline cellulose to isosorbide over Ru/C catalyst[J]. Green Chemistry, 2011, 13(4): 839-842.
[67] Op de Beeck B, Geboers J, Van de Vyver S, et al. Conversion of (Ligno)Cellulose Feeds to Isosorbide with Heteropoly Acids and Ru on Carbon[J]. ChemSusChem, 2013, 6(1): 199-208.
[68] Sun P, Long X D, He H, et al. Conversion of Cellulose into Isosorbide over Bifunctional Ruthenium Nanoparticles Supported on Niobium Phosphate[J]. ChemSusChem, 2013, 6(11): 2190-2197.
[69] Xi J X, Zhang Y, Ding D Q, et al. Catalytic production of isosorbide from cellulose over mesoporous niobium phosphate-based heterogeneous catalysts via a sequential process[J]. Applied Catalysis a-General, 2014, 469: 108-115.
/
〈 |
|
〉 |