Welcome to visit Advances in New and Renewable Energy!

Preparation of TiO2-Cu[HgI4] Nanocomposite and Its Thermochromic Performance

  • CHEN Xiao-li ,
  • LIN Fu-hua ,
  • WEN Chun-yan ,
  • SU Qiu-cheng ,
  • LI Xin-jun
Expand
  • CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China

Received date: 2014-05-05

  Revised date: 2014-07-07

  Online published: 2014-08-30

Abstract

TiO2-Cu[HgI4] nanocomposite was synthesized by using TiO2 as carrier. HRTEM, XRD, DSC and UV-Vis were employed to characterize the structure and investigate the thermochromic performance of the nanocomposite. Results indicate that TiO2-Cu[HgI4] nanocomposite has good thermochromic performance. The visible light absorption is strengthened with the increase of nTiO2/nCu[HgI4] mole ratio, and the phase transition temperature rises accordingly.

Cite this article

CHEN Xiao-li , LIN Fu-hua , WEN Chun-yan , SU Qiu-cheng , LI Xin-jun . Preparation of TiO2-Cu[HgI4] Nanocomposite and Its Thermochromic Performance[J]. Advances in New and Renewable Energy, 2014 , 2(4) : 310 -314 . DOI: 10.3969/j.issn.2095-560X.2014.04.011

References

[1] Chen S, Paulose M. Ruan C, et al. Electrochemically synthesized CdS nanoparticle-modified TiO2 nanotube- array photoele-ctrodes: Preparation characterization and application to photoelectrochemical cells[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 177(2): 177-184.

[2] Ahmed M D, El-Zeiny M E. Thermochromism in Ni (Ⅱ) complexes with Schiff base derivatives of 4-amino- antipyrine[J]. Thermochimica Acta., 1988, 131: 1-6.

[3] Tamotsu I, Naomi H. Structure and optical properties of a thermochromic Schiff base. Low temperature structurestudies of the N, N-disalicylidene-p-phenyl endiamine and N, N-disalicylidene-1,6-pyrendiamine crystals[J]. Bull. Chem. Soc. Jpn., 1989, 62: 2245-2251.

[4] Zhu C F, WU A B. Studies on the synthesis and thermochromic properties of crystal violet lactone and its reversible thermochromic complexes[J]. Thermochimica Acta., 2005, 425(1-2): 7-12.

[5] 朱少萍, 冯玉英, 乐传俊, 等. 2-羟基-1-萘醛缩2-氨基-4-甲基吡啶的合成及其热色性研究[J]. 化工新型材料, 2010, 38(11): 81-82.

[6] 梁小蕊, 张勇, 张立春. 可逆热致变色材料的变色机理及应用[J]. 化学工程师, 2009, 164(5): 56-58.

[7] 张慧萍, 李正宇, 李永明, 等. 无机低温热变色材料的研究及应用[J]. 云南师范大学学报, 2000, 20(5):59-61.

[8] Zhu K., Neale N R, Miedaner A, et al. Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays[J]. Nano Letters, 2007, 7(1): 69-74.

[9] Senadeera G, Kitamura T, Wada Y, et al. Enhanced photoresponses of polypyrrole on surface modified TiO2 with self-assembled monolayers[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 184(1): 234-239.

[10] Xie T F, Wang D J, Zhu L J, et al. Application of surface photovoltage technique in photocatalysis studies on modified TiO2 photo-catalysts for photo-reduction of CO2[J]. Materials chemistry and physics, 2001, 70(1): 103-106.

[11] Surnev S, Ramsey M, Netzer F. Vanadium oxide surface studies[J]. Progress in surface science, 2003, 73(4): 117-165.

[12] Sun W T, Yu Y, Pan H Y, et al. CdS quantum dots sensitized TiO2nanotube-array photoelectrodes[J]. Journal of the American Chemical Society, 2008, 130(4): 1124-1125.

[13] Gao X F, Li H B, Sun W T, et al. CdTe quantum dots-sensitized TiO2 nanotube array photoelectrodes[J]. The Journal of Physical Chemistry C, 2009, 113(18): 7531-7535.

[14] Ngaotrakanwiwat P, Tatsuma T. Optimization of energy storage TiO2-WO3 photocatalysts and further modification with phosphotungstic acid[J]. Journal of Electroanalytical Chemistry, 2004, 573(2): 263-269.

[15] Takahashi Y, Ngaotrakanwiwat P, Tatsuma T. Energy storage TiO2-MoO3 photocatalysts[J]. Electrochimica acta, 2004, 49(12): 2025-2029.

[16] Tatsuma T, Saitoh S, Ngaotrakanwiwat P, et al. Energy storage of TiO2-WO3 photocatalysis systems in the gas phase[J]. Langmuir, 2002, 18(21): 7777-7779.

[17] 郑金玉, 吴梁鹏, 王学伟, 等. 紫外光下Ag掺杂TiO2薄膜基底对VO2相转变温度的影响[J]. 新能源进展, 2014, 2(1): 59-62.

 
Outlines

/