Advances in New and Renewable Energy >
Research Progress of α-Glucuronidase, an Enzyme for Degrading Hemicellulose Side-Chain
Received date: 2014-08-29
Revised date: 2014-09-06
Online published: 2014-10-30
Hemicellulose is one of the most abundant renewable resources in nature. The bioconversion of hemicellulose into biofuels or chemicals is a research hotspot in the world. Hemicellulose consists of a backbone of xylan residues and some branches like glucuronic acid. α-Glucuronidase, which is capable to hydrolysis the α-1,2-glycosidic bond between xylan and glucuronic acid, is one of the key enzyme to degrade hemicellulose completely. The recent research progresses on catalysis mechanism, structure, charaterization, and gene cloning of α-glucuronidase are summarized in this paper.
WU Jin-lian , XUE Yong , LI Hai-long , GAN Li-hui , LIU Jian , LONG Min-nan . Research Progress of α-Glucuronidase, an Enzyme for Degrading Hemicellulose Side-Chain[J]. Advances in New and Renewable Energy, 2014 , 2(5) : 327 -333 . DOI: 10.3969/j.issn.2095-560X.2014.05.001
[1] Peng F, Peng P, Xu F, et al. Fractional purification and bioconversion of hemicelluloses[J]. Biotechnol Adv, 2012, 30(4): 879-903.
[2] 阮同琦, 赵祥颖, 刘建军. 木聚糖酶及其应用研究进展[J]. 山东食品发酵, 2008, 1: 42-45.
[3] Han Y, Agarwal V, Dodd D, et al. Biochemical and structural insights into xylan utilization by the thermophilic bacterium Caldanaerobius polysaccharolyticus[J]. J. Biol. Chem, 2012, 287(42): 34946-34960.
[4] Johnson K G, Silva M C, Mackenzie C R, et al. Microbial Degradation of Hemicellulosic Materials[J]. Appl Biochem Biotechnol, 1989, 20(21): 245-259.
[5] Henrissat B. A classification of glycosyl hydrolases based on amino acid sequence similarities[J]. Biochem. J., 1991, 280: 309-316.
[6] Cantarel B L, Coutinho P M, Rancurel C, et al. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics[J]. Nucleic Acids Res, 2009, 37: D233-D238.
[7] De Wet B J M, Van Zyl W H, Prior B A. Characterization of the Aureobasidium pullulans α-glucuronidase expressed in Saccharomyces cerevisiae[J]. Enzyme Microb. Technol, 2006, 38(5): 649-656.
[8] De Wet B J M, Van Zyl W H, Prior B A. Microbial α-glucuronidases: In Lignocellulose Biodegradation[M]. Washington, DC: American Chemical Society, 2004, 241-254.
[9] Rogowski A, Baslé A, Farinas C S, et al. Evidence that GH115 α-glucuronidase activity, which is required to degrade plant biomass, is dependent on conformational flexibility[J]. J. Biol. Chem, 2014, 289(1): 53-64.
[10] Biely P, de Vries R P, Vrsanska M, et al. Inverting character of α-glucuronidase A from Aspergillus tubingensis[J]. Biochim. Biophys. Acta, 2000, 1474: 360-364.
[11] Kolenová K, Ryabova O, Vrsanská M, et al. Inverting character of family GH115 α-glucuronidases[J]. FEBS Lett, 2010, 584(18): 4063-4068.
[12] Shallom D, Golan G, Shoham G, et al. Effect of dimer dissociation on activity and thermostability of the α-glucuronidase from Geobacillus stearothermophilus: dissecting the different oligomeric forms of family 67 glycoside hydrolases[J]. J. Bacteriol, 2004, 186(20): 6928-6937.
[13] Didier N, Tibor N, Harry J Gilbert, et al. The Structural Basis for Catalysis and Specificity of the Pseudomonas cellulosa α-Glucuronidase, GlcA67A[J]. Structure, 2002, 10: 547-556.
[14] Nagy T, Nurizzo D, Davies G J, et al. The α-glucuronidase, GlcA67A, of Cellvibrio japonicus utilizes the carboxylate and methyl groups of aldobiouronic acid as important substrate recognition determinants[J]. J. Biol. Chem, 2003, 278(22): 20286-20292.
[15] Golan G, Shallom D, Teplitsky A, et al. Crystal structures of Geobacillus stearothermophilus α-glucuronidase complexed with its substrate and products: mechanistic implications[J]. J. Biol. Chem, 2004, 279(4): 3014-3024.
[16] Juturu V, Wu J C. Insight into microbial hemicellulases other than xylanases: a review[J]. J. Chem. Technol. Biotechnol, 2013, 88(3): 353-363.
[17] Fujimoto Z, Ichinose H, Biely P, et al. Crystallization and preliminary crystallographic analysis of the glycoside hydrolase family 115 α-glucuronidase from Streptomyces pristinaespiralis[J]. Acta Crystallogr Sect F Struct Biol Cryst Commun, 2011, 67: 68-71.
[18] Tenkanen M, Siika-aho M. An α-glucuronidase of Schizophyllum commune acting on polymeric xylan[J]. J. Biotechnol, 2000, 78: 149-161.
[19] Heneghan M N, McLoughlin L, Murray P G, et al. Cloning, characterisation and expression analysis of α-glucuronidase from the thermophilic fungus Talaromyces emersonii[J]. Enzyme Microb. Technol, 2007, 41: 677-682.
[20] Lee C C, Kibblewhite R E, Wagschal K, et al. Isolation of α-glucuronidase enzyme from a rumen metagenomic library[J]. Protein J, 2012, 31(3): 206-211.
[21] Bronnenmeier K, Meissner H, Stocker S, et al. α-D-Glucoronidases from the xylanolytic thermophiles Clostridium stecorarium and Thermoanaerobacterium saccharolyticum[J]. Microbiology, 1995, 141: 2033-2040.
[22] Ruile P, Winterhalter C, Liebl W. Isolation and analysis of a gene encoding α-glucuronidase, an enzyme with a novel primary structure involved in the breakdown of xylan[J]. Mol. Microbiol, 1997, 23(2): 267-279.
[23] Chow V, Nong G, Preston J F. Structure, function, and regulation of the aldouronate utilization gene cluster from Paenibacillus sp. strain JDR-2[J]. J Bacteriol, 2007, 189(24): 8863-8870.
[24] Shao W, Obi S, Puls J, et al. Purification and characterization of the α-glucuronidase from Thermoanaerobacterium sp. strain JW/SL-YS485, an important enzyme for the utilization of substituted xylans[J]. Appl. Environ. Microbiol, 1995, 61: 1077-1081.
[25] Castanares A, Hay A J, Gordon A H, et al. D-Xylan-degrading enzyme system from the fungus Phanerochaete chrysosporium: isolation and partial characterisation of α-(4-O-methyl)-D-glucuronidase[J]. J. Biotechnol, 1995, 43: 183-194.
[26] Ryabova O, Vrsanska M, Kaneko S, et al. A novel family of hemicellulolytic α-glucuronidase[J]. FEBS Lett, 2009, 583(9): 1457-1462.
[27] De Vries R, Poulsen C H, Madrid S, et al. aguA, the gene encoding an extracellular α-glucoronidase from Aspergillus tubingensis, is specifically induced on xylose and not on glucoronic acid[J]. J. Bacteriol, 1998, 180(2): 243-249.
[28] Iihashi N, Nagayama J, Habu N, et al. Enzymatic degradation of amylouronate (α-(1→4)-linked glucuronan) by α-glucuronidase from Paenibacillus sp. TH501b[J]. Carbohydr. Polym, 2009, 77(1): 59-64.
[29] Lee C C, Kibblewhite R E, Wagschal K, et al. Isolation and characterization of a novel GH67 α-glucuronidase from a mixed culture[J]. J. Ind. Microbiol. Biotechnol., 2012, 39 (8): 1245-1251.
[30] Siika-aho M, Tenkanen M, Buchert J, et al. An α-glucuronidase from Trichoderma reesei RUT C-30 [J]. Enzyme Microb. Technol., 1994, 16: 813-819.
[31] Suresh C, Kitaoka M, Hayashi K. A thermostable non-xylanolytic α-glucuronidase of Thermotoga maritima MSB8[J]. Biosci Biotechnol Biochem, 2003, 67(11): 235-236.
[32] 薛业敏, 毛忠贵, 邵蔚蓝. 极端嗜热菌海栖热袍菌 α-葡萄糖醛酸酶的高效表达和重组酶的纯化[J]. 生物工程学报, 2004, 20(4): 554-560.
[33] Margoll ES-C, Saloheimo M, Penttila M, et al. The α-glucuronidase gene encoding gene of Trichoderma reesei[J]. Gene, 1997, 172: 171-172.
/
〈 |
|
〉 |