Advances in New and Renewable Energy >
Studies in Biomass Ethanol Production by Kluyveromyces marxianus
Received date: 2014-08-01
Revised date: 2014-08-19
Online published: 2014-10-30
With the advantages of low energy-cost, rapid fermentative rate, and less contaminant probabilities, ethanol fermentation at high-temperature has becomes the emerging preference for biofuel production. Compared to conventional yeast, Kluyveromyces marxianus shows the abilities of wider substrate utilization, favorable fermentative performance, powerful capability of protein secretion, suitable for molecular manipulation, which is potential for bio-ethanol production. This paper reviewed the advances of Kluyveromyces marxianus in the field of biomass ethanol production.
CHEN Xiao-yan , XU Jing-liang , YUAN Zhen-hong , LIANG Cui-yi , ZHANG Yu . Studies in Biomass Ethanol Production by Kluyveromyces marxianus[J]. Advances in New and Renewable Energy, 2014 , 2(5) : 364 -372 . DOI: 10.3969/j.issn.2095-560X.2014.05.007
[1] Hensing M C, Rouwenhorst R J, Heijnen J J, et al. Physiological and technological aspects of large-scale heterologous protein production with yeasts[J]. Antonie van Leeuwenhoek, 1995, 67(3): 261-279.
[2] Lodder J, Kreger-Van R N. The yeasts: a taxonomic study[M]. NHPC, Amsterdam. 1952.
[3] van der Walt J P. Kluyveromyces−a new yeast genus of the Endomycetales[J]. Antonie van Leeuwenhoek, 1956, 22(3): 265-272.
[4] Lane M M, Morrissey J P. Kluyveromyces marxianus: A yeast emerging from its sister’s shadow[J]. Fungal Biology Reviews, 2010, 24: 17-26.
[5] Castro R C, Roberto I C. Selection of a Thermotolerant Kluyveromyces marxianus strain with potential application for cellulosic ethanol production by simultaneous saccharification and fermentation[J]. Appl Biochem Biotechnol, 2014, 172(3): 1553-1564
[6] Tomás-pejó E, Oliva J M, González A, et al. Bioethanol production from wheat straw by the thermotolerant yeast Kluyveromyces marxianus CECT 10875 in a simultaneous saccharification and fermentation fed-batch process[J]. Fuel, 2009, 88(11): 2142-2147.
[7] Suryawati L, Wilkins M R, Bellmer D D, et al. Effect of hydrothermolysis process conditions on pretreated switchgrass composition and ethanol yield by SSF with Kluyveromyces marxianus IMB4[J]. Process Biochem, 2009, 44(5): 540-545.
[8] Rocha M V, Rodrigues T H, Melo V M, et al. Cashew apple bagasse as a source of sugars for ethanol production by Kluyveromyces marxianus CE025[J]. J Ind Microbiol Biotechnol, 2011, 38(8): 1099-1107.
[9] García-Aparicio M P, Oliva J M, Manzanares P, et al. Second-generation ethanol production from steam exploded barley straw by Kluyveromyces marxianus CECT 10875[J]. Fuel, 2011, 90 (4): 1624-1630.
[10] Moreno A D, Ibarra D, Ballesteros I, et al. Comparing cell viability and ethanol fermentation of the thermotolerant yeast Kluyveromyces marxianus and Saccharomyces cerevisiae on steam-exploded biomass treated with laccase[J]. Bioresour Technol, 2013, 135: 239-245.
[11] Pessani N K, Atiyeh H K, Wilkins M R, et al. Simultaneous saccharification and fermentation of Kanlow switchgrass by thermotolerant Kluyveromyces marxianus IMB3: the effect of enzyme loading, temperature and higher solid loadings[J]. Bioresour Technol, 2011, 102(22): 10618-10624.
[12] Yanase S, Hasunuma T, Yamada R, et al. Direct ethanol production from cellulosic materials at high temperature using the thermotolerant yeast Kluyveromyces marxianus displaying cellulolytic enzymes[J]. Appl Microbiol Biotechnol, 2010, 88(1): 381-388.
[13] Zoppellari F, Bardi L. Production of bioethanol from effluents of the dairy industry by Kluyveromyces marxianus[J]. N Biotechnol, 2013, 30(6): 607-613.
[14] Silveira W B, Passos F J V, Mantovani H C, et al. Ethanol production from cheese whey permeate by Kluyveromyces marxianus UFV-3: A flux analysis of oxido-reductive metabolism as a function of lactose concentration and oxygen levels[J]. Enzyme Microb Technol, 2005, 36(7): 930-936.
[15] Akta? N, Boyaci I H, Mutlu M, et al. Optimization of lactose utilization in deproteinated whey by Kluyveromyces marxianus using response surface methodology (RSM)[J]. Bioresour Technol, 2006, 97(18): 2252-2259.
[16] Salman Z, Mohammad O. Ethanol production from crude whey by Kluyveromyces marxianus[J]. Biochem Eng J, 2006, 27(3): 295-298.
[17] Christensen A D, Kádár Z, Oleskowicz-Popiel P, et al. Production of bioethanol from organic whey using Kluyveromyces marxianus[J]. J Ind Microbiol Biotechnol, 2011, 38(2): 283-289.
[18] Diniza R H S, Rodriguesb M Q R B, Fiettob L G, et al. Optimizing and validating the production of ethanol from cheese whey permeate by Kluyveromyces marxianus UFV-3[J]. Biocatal Agric Biotechnol, 2014, 3(2): 111-117.
[19] Rouwenhorst R J, Visser L E, van der Baan A A, et al. Production, distribution, and kinetic properties of inulinase in continuous culture of Kluyveromyces marxianus CBS 6556[J]. Appl Environ Microbiol, 1988, 54(5): 1131-1137.
[20] Esteban B F, Mariano G G, Lorena G R, et al. Immobilization system of Kluyveromyces marxianus cells in barium alginate for inulin hydrolysis[J]. Proc Biochem, 2001, 37(5): 513-519.
[21] 袁文杰. 克鲁维酵母同步糖化发酵菊芋生产乙醇的研究[D]. 大连: 大连理工大学, 2009, 17-74.
[22] Hu N, Yuan B, Sun J, et al. Thermotolerant Kluyveromyces marxianus and Saccharomyces cerevisiae strains representing potentials for bioethanol production from Jerusalem artichoke by consolidated bioprocessing[J]. Appl Microbiol Biotechnol, 2012, 95(5): 1359-1368.
[23] Kim S, Park J M, Kim C H. Ethanol production using whole plant biomass of Jerusalem artichoke by Kluyveromyces marxianus CBS1555[J]. Appl Biochem Biotechnol, 2013, 169(5): 1531-1545.
[24] Bajpai P, Margaritis A. The effect of temperature and pH on ethanol production by free and immobilized cells of Kluyveromyces marxianus grown on Jerusalem artichoke extract[J]. Biotechnol Bioeng, 1987, 30(2): 306-313.
[25] 王远微, 张诚民, 索化夷, 等. 传统发酵牦牛酸奶中马克斯克鲁维酵母菌的分离鉴定及系统发育分析[J/OL]. 食品科学. 2014. http://www.cnki.net/kcms/detail/11. 2206.TS.20140113.1516.061.html.
[26] 李新玲, 顾瑞霞, 闫辉, 等. 马克斯克鲁维酵母的筛选鉴定与应用[J]. 中国奶牛, 2013, 15: 44-46.
[27] Margaritis A, Bajpai P. Direct Fermentation of D-Xylose to Ethanol by Kluyveromyces marxianus Strains[J]. Appl Environ Microbiol, 1982, 44(5): 1039-1041.
[28] Banat I M. Nigam P, Marchant R. The isolation of thermotolerant fermentative yeasts capable of growth at 52oC and ethanol production at 45oC and 50 oC [J]. World J Microbiol Biotechnol, 1992, 8: 259-263.
[29] Limtong S, Sringiew C, Yongmanitchai W. Production of fuel ethanol at high temperature from sugar cane juice by a newly isolated Kluyveromyces marxianus[J]. Bioresour Technol, 2007, 98(17): 3367-3374.
[30] Grba S, Stehlik-Tomas V, Stanzer D, et al. Selection of yeast strain Kluyveromyces marxianus for alcohol and biomass production on whey[J]. Chem Biochem Eng, 2002, 16(1): 13-16.
[31] Goshima T, Tsuji M, Inoue H, et al. Bioethanol production from Lignocellulosic biomass by a novel Kluyveromyces marxianus strain[J]. Biosci Biotechnol Biochem, 2013, 77(7): 1505-1510.
[32] Das S, Kellermann E, Hollenberg C P. Transformation of Kluyveromyces fragilis[J]. J Bacteriol, 1984, 158(3): 1165-1167.
[33] Nonklang S, Abdel-Banat B M, Cha-aim K, et al. High-temperature ethanol fermentation and transformation with linear DNA in the thermotolerant yeast Kluyveromyces marxianus DMKU3-1042[J]. Appl Environ Microbiol, 2008, 74(24): 7514-7521.
[34] Ribeiro O, Gombert A K, Teixeira J A, et al. Application of the Cre-loxP system for multiple gene disruption in the yeast Kluyveromyces marxianus[J]. J Biotechnol, 2007, 131(1): 20-26.
[35] Bergkamp R J, Bootsman T C, Toschka H Y, et al. Expression of an α-galactosidase gene under control of the homologous inulinase promoter in Kluyveromyces marxianus[J]. Appl Microbiol Biotechnol, 1993, 40(2/3): 309-317.
[36] Pecota D C, Da Silva N A. Evaluation of the tetracycline promoter system for regulated gene expression in Kluyveromyces marxianus[J]. Biotechnol Bioeng, 2005, 92(1): 117-123.
[37] Ball M M, Raynal A, Guerineau M, et al. Construction of efficient centromeric, multicopy and expression vectors for the yeast Kluyveromyces marxianus using homologous elements and the promoter of a purine- cytosine-like permease[J]. J Mol Microbiol Biotechnol, 1999, 1(2): 347-353.
[38] Lee K S, Kim J S, Heo P, et al. Characterization of Saccharomyces cerevisiae promoters for heterologous gene expression in Kluyveromyces marxianus[J]. Appl Microbiol Biotechnol, 2013, 97(5): 2029-2041.
[39] Hong J, Wang Y, Kumagai H, et al. Construction of thermotolerant yeast expressing thermostable cellulase genes[J]. J Biotechnol, 2007, 130(2): 114-123.
[40] Sakanaka K, Yan W, Kishida M, et al. Breeding a fermentative yeast at high temperature using protoplast fusion[J]. J Ferment Bioeng, 1996, 81(2): 104-108.
[41] 李英军, 马晓燕, 赵红梅, 等. 马克斯克鲁维酵母原生质体制备和再生条件的研究[J]. 酿酒科技, 2006, 7: 51-54.
[42] 包伟霞, 王静洁, 王晓斐, 等. 酿酒酵母和马克斯克鲁维酵母原生质体制备与再生研究[J]. 中国酿造, 2010, 9: 42-44.
[43] Hadiyanto H, Ariyanti D, Aini A P, et al. Batch and fed-batch fermentation system on ethanol production from whey using Kluyveromyces marxianus[J]. Int Journal of Renewable Energy Development, 2013, 2 (3): 127-131.
[44] 梁翠谊, 许敬亮, 袁振宏, 等. 葡萄糖苷酶高温同步糖化发酵产乙醇应用研究[J]. 化学工程, 2012, 40(3): 4-7.
/
〈 |
|
〉 |