Welcome to visit Advances in New and Renewable Energy!

Research Progress on the Development and Application of Chemical Heat Storage Materials

  • YANG Xi-xian ,
  • KUBOTA Mitsuhiro ,
  • HE Zhao-hong ,
  • KOBAYASHI Noriyuki ,
  • DENG Li-sheng ,
  • HUANG Hong-yu
Expand
  • 1. CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences,     Guangzhou 510640, China;
    2. Nagoya University, Nagoya 4648603, Japan

Received date: 2014-04-16

  Revised date: 2014-08-12

  Online published: 2014-10-30

Abstract

Chemical heat storage, as the core technology of chemical energy and heat energy interconversion, is one of the most significant energy storage technologies in the 21st century. Compared with traditional latent heat storage, chemical heat storage has enhanced by orders of magnitude in energy storage density, and its superiority in operating temperature range as well as stability of materials is outstanding. This paper is oriented toward several primary chemical heat storage materials, such as metal hydroxide, metal hydride, metal carbonate, crystalline hydrate and metal salts ammonate. We put emphasis on elaborating the application mechanism and operating condition of each material. We also analyzed the research status as well as scientific and application problems of those materials that need to be solved urgently. We strongly believed that the main development direction of chemical heat storage technology in the future lies on the optimization and synthesis of composite materials and doped materials.

Cite this article

YANG Xi-xian , KUBOTA Mitsuhiro , HE Zhao-hong , KOBAYASHI Noriyuki , DENG Li-sheng , HUANG Hong-yu . Research Progress on the Development and Application of Chemical Heat Storage Materials[J]. Advances in New and Renewable Energy, 2014 , 2(5) : 397 -402 . DOI: 10.3969/j.issn.2095-560X.2014.05.012

References

[1] Agyenim F, Hewitt N, Eames P, et al. A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (lhtess)[J]. Renewable and Sustainable Energy Reviews, 2010, 14(2): 615-628.

[2] Oró E, de Gracia A, Castell A, et al. Review on phase change materials (PCMs) for cold thermal energy storage applications[J]. Applied Energy, 2012, 99(0): 513-533.

[3] Zhang S, Niu J. Experimental investigation of effects of supercooling on microencapsulated phase-change material (MPCM) slurry thermal storage capacities[J]. Solar Energy Materials and Solar Cells, 2010, 94(6): 1038-1048.

[4] Li M, Wu Z, Kao H, et al. Experimental investigation of preparation and thermal performances of paraffin/ bentonite composite phase change material[J]. Energy Conversion and Management, 2011, 52(11): 3275-3281.

[5] Li W, Song G, Tang G, et al. Morphology, structure and thermal stability of microencapsulated phase change material with copolymer shell[J]. Energy, 2011, 36(2): 785-791.

[6] Pardo P, Deydier A, Anxionnaz-Minvielle Z, et al. A review on high temperature thermochemical heat energy storage[J]. Renewable and Sustainable Energy Reviews, 2014, 32(0): 591-610.

[7] Felderhoff M, Bogdanovi? B. High temperature metal hydrides as heat storage materials for solar and related applications[J]. International journal of molecular sciences, 2009, 10(1): 325-344.

[8] Haije W G, Veldhuis J B J, Smeding S F, et al. Solid/vapour sorption heat transformer: Design and performance[J]. Applied Thermal Engineering, 2007, 27(8-9): 1371-1376.

[9] Yu N, Wang R Z, Wang L W. Sorption thermal storage for solar energy[J]. Progress in Energy and Combustion Science, 2013, 39(5): 489-514.

[10] Zhou D, Zhao C Y, Tian Y. Review on thermal energy storage with phase change materials (PCMs) in building applications[J]. Applied Energy, 2012, 92(0): 593-605.

[11] Yan Q, Zhang X, Zhang L. Analysis and optimization on solar energy chemical heat storage material[C]//In Proceedings of the 8th international symposium on heating, ventilation and air conditioning, Li, A, Zhu, Y; Li, Y. Eds. Springer Berlin Heidelberg: 2014, 262: 121-129.

[12] Schaube F, Koch L, Wörner A, et al. A thermodynamic and kinetic study of the de-and rehydration of Ca (OH)2 at high H2O partial pressures for thermo-chemical heat storage[J]. Thermochimica Acta, 2012, 538: 9-20.

[13] Schmidt M, Szczukowski C, Roßkopf C, et al. Experimental results of a 10 kW high temperature thermochemical storage reactor based on calcium hydroxide[J]. Applied Thermal Engineering, 2014, 62(2): 553-559.

[14] Roßkopf C, Linder M, Wörner A. Optimierung der reaktionsbetteigenschaften für thermochemische energiespeicher[J]. Chemie Ingenieur Technik, 2012, 84(8): 1244-1244.

[15] Schaube F, Kohzer A, Schütz J, et al. De- and rehydration of Ca(OH)2 in a reactor with direct heat transfer for thermo-chemical heat storage. Part a: Experimental results[J]. Chemical Engineering Research and Design, 2013, 91(5): 856-864.

[16] Felderhoff M, Urbanczyk R, Peil S. Thermochemical heat storage for high temperature applications–a review[J]. Green, 2013, 3(2): 113-123.

[17] Ishitobi H, Hirao N, Ryu J, et al. Evaluation of heat output densities of lithium chloride-modified magnesium hydroxide for thermochemical energy storage[J]. Industrial & Engineering Chemistry Research, 2013, 52(15): 5321-5325.

[18] Ishitobi H, Uruma K, Ryu J, et al. Durability of lithium chloride-modified magnesium hydroxide on cyclic operation for chemical heat pump[J]. Journal of Chemical Engineering of Japan, 2012, 45(1): 58-63.

[19] Ishitobi H, Uruma K, Takeuchi M, et al. Dehydration and hydration behavior of metal-salt-modified materials for chemical heat pumps[J]. Applied Thermal Engineering, 2013, 50(2): 1639-1644.

[20] Myagmarjav O, Ryu J, Kato Y. Lithium bromide-mediated reaction performance enhancement of a chemical heat-storage material for magnesium oxide/water chemical heat pumps[J]. Applied Thermal Engineering, 2014, 63(1): 170-176.

[21] Tae Kim S, Ryu J, Kato Y. Reactivity enhancement of chemical materials used in packed bed reactor of chemical heat pump[J]. Progress in Nuclear Energy, 2011, 53(7): 1027-1033.

[22] Harries D N, Paskevicius M, Sheppard D A, et al. Concentrating solar thermal heat storage using metal hydrides[J]. Proceedings of the IEEE, 2012, 100(2): 539-549.

[23] Bogdanovi? B, Ritter A, Spliethoff B. Active MgH2/Mg systems for reversible chemical energy storage[J]. Angewandte Chemie International Edition in English, 1990, 29(3): 223-234.

[24] Bogdanovi? B, Hartwig T H, Spliethoff B. The development, testing and optimization of energy storage materials based on the MgH2mg system[J]. International Journal of Hydrogen Energy, 1993, 18(7): 575-589.

[25] Bogdanovi? B, Ritter A, Spliethoff B, et al. A process steam generator based on the high temperature magnesium hydride/magnesium heat storage system[J]. International Journal of Hydrogen Energy, 1995, 20(10): 811-822.

[26] Bao Z, Yang F, Wu Z, et al. Optimal design of metal hydride reactors based on CFD–taguchi combined method[J]. Energy Conversion and Management, 2013, 65(0): 322-330.

[27] Shen D, Zhao C Y. Thermal analysis of exothermic process in a magnesium hydride reactor with porous metals[J]. Chemical Engineering Science, 2013, 98(0): 273-281.

[28] Sheppard D A, Paskevicius M, Buckley C E. Thermodynamics of hydrogen desorption from namgh3 and its application as a solar heat storage medium[J]. Chemistry of Materials, 2011, 23(19): 4298-4300.

[29] Bogdanovi? B, Reiser A, Schlichte K, et al. Thermodynamics and dynamics of the Mg–Fe–H system and its potential for thermochemical thermal energy storage[J]. Journal of Alloys and Compounds, 2002, 345(1/2): 77-89.

[30] Reiser A, Bogdanovi? B, Schlichte K. The application of mg-based metal-hydrides as heat energy storage systems[J]. International Journal of Hydrogen Energy, 2000, 25(5): 425-430.

[31] Schaube F, Wörner A, Tamme R. High temperature thermochemical heat storage for concentrated solar power using gas-solid reactions[J]. Journal of solar energy engineering, 2011, 133(3): 0310061-0310067.

[32] Kubota M, Kyaw K, Watanabe F, et al. Study of decarbonation of CaCO3 for high temperature thermal energy storage[J]. Journal of Chemical Engineering of Japan, 2000, 33(5): 797-800.

[33] Ervin G. Solar heat storage using chemical reactions[J]. Journal of Solid State Chemistry, 1977, 22(1): 51-61.

[34] Kato Y, Yamada M, Kanie T, et al. Calcium oxide/carbon dioxide reactivity in a packed bed reactor of a chemical heat pump for high-temperature gas reactors[J]. Nuclear Engineering and Design, 2001, 210(1/3): 1-8.

[35] Arjmand M, Liu L, Neretnieks I. Exergetic efficiency of high-temperature-lift chemical heat pump (chp) based on CaO/CO2 and CaO/H2O working pairs[J]. International Journal of Energy Research, 2013, 37(9): 1122-1131.

[36] Barker R. The reactivity of calcium oxide towards carbon dioxide and its use for energy storage[J]. Journal of Applied Chemistry and Biotechnology, 1974, 24(4/5): 221-227.

[37] Aihara M, Nagai T, Matsushita J, et al. Development of porous solid reactant for thermal-energy storage and temperature upgrade using carbonation/decarbonation reaction[J]. Applied Energy, 2001, 69(3): 225-238.

[38] Kubota M, Horie N, Togari H, et al. Improvement of hydration rate of LiOH/LiOH•H2O reaction for low- temperature thermal energy storage[C]//In 2013 Annual Meeting of Japan Society of Refrigerating and Air Conditioning Engineers, Tokai University, Japan, 2013.

[39] Posern K, Kaps C. Calorimetric studies of thermochemical heat storage materials based on mixtures of MgSO4 and MgCl2[J]. Thermochimica Acta, 2010, 502(1/2): 73-76.

[40] Hamdan M A, Rossides S D, Haj Khalil R. Thermal energy storage using thermo-chemical heat pump[J]. Energy Conversion and Management, 2013, 65(0): 721-724.

[41] Balasubramanian G, Ghommem M, Hajj M R, et al. Modeling of thermochemical energy storage by salt hydrates[J]. International Journal of Heat and Mass Transfer, 2010, 53(25/26): 5700-5706.

[42] Hongois S, Kuznik F, Stevens P, et al. Development and characterisation of a new MgSO4−zeolite composite for long-term thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2011, 95(7): 1831-1837.

[43] Whiting G, Grondin D, Bennici S, et al. Heats of water sorption studies on zeolite–MgSO4 composites as potential thermochemical heat storage materials[J]. Solar Energy Materials and Solar Cells, 2013, 112: 112-119.

[44] Ovoshchnikov D S, Glaznev I S, Aristov Y I. Water sorption by the calcium chloride/silica gel composite: The accelerating effect of the salt solution present in the pores[J]. Kinetics and Catalysis, 2011, 52(4): 620-628.

[45] Hu J, Zheng M S, Teng H P, et al. Synthetizing the expanded graphite based Caxzny(OH)2(x+y): A nanocomposite solar chemical storage material by coprecipitation (in chinese)[J]. Chin Sci Bull, 2014, 59: 267-272.

[46] Zajaczkowski B, Królicki Z, Je?owski A. New type of sorption composite for chemical heat pump and refrigeration systems[J]. Applied Thermal Engineering, 2010, 30(11/12): 1455-1460.

[47] Lee J-H, Ogura H. Reaction characteristics of various gypsum as chemical heat pump materials[J]. Applied Thermal Engineering, 2013, 50(2): 1557-1563.

[48] Meunier F. Solid sorption heat powered cycles for cooling and heat pumping applications[J]. Applied Thermal Engineering, 1998, 18(9): 715-729.

[49] Neveu P, Castaing J. Solid-gas chemical heat pumps: Field of application and performance of the internal heat of reaction recovery process[J]. Heat Recovery Systems and CHP, 1993, 13(3): 233-251.

[50] Stitou D, Mazet N, Mauran S. Experimental investigation of a solid/gas thermochemical storage process for solar air-conditioning[J]. Energy, 2012, 41(1): 261-270.

[51] Li T, Wang R, Kiplagat J K. A target-oriented solid-gas thermochemical sorption heat transformer for integrated energy storage and energy upgrade[J]. AIChE Journal, 2013, 59(4): 1334-1347.

[52] Li T, Wang R, Kiplagat J K, et al. Performance analysis of an integrated energy storage and energy upgrade thermochemical solid–gas sorption system for seasonal storage of solar thermal energy[J]. Energy, 2013, 50(0): 454-467.

[53] Sharonov V E, Aristov Y I. Ammonia adsorption by MgCl2, CaCl2 and BaCl2 confined to porous alumina: The fixed bed adsorber[J]. Reaction Kinetics and Catalysis Letters, 2005, 85(1): 183-188.

[54] Glaznev I, Ponomarenko I, Kirik S, et al. Composites CaCl2/SBA-15 for adsorptive transformation of low temperature heat: Pore size effect[J]. International Journal of Refrigeration, 2011, 34(5): 1244-1250.

Outlines

/