Welcome to visit Advances in New and Renewable Energy!

Kinetics of Substrate Hydrolysis for Anaerobic Digestion of Corn Stalk

  • WANG Qing-jing ,
  • WANG Jia-lei ,
  • HE Wei ,
  • LI Dong ,
  • FENG Hong-yan ,
  • YAN Zhi-ying ,
  • LIAO Yin-zhang ,
  • LIU Xiao-feng
Expand
  • 1. Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China;
    2. Chengdu Zhongke Energy& Environmental Protection CO. LTD, Chengdu 610041, China;
    3. Dushigaoke (Beijing) environment& science and technology CO., LTD, Chengdu 610041, China;
    4. University of Chinese Academy of Sciences, Beijing 100041, China

Received date: 2014-12-12

  Revised date: 2015-01-06

  Online published: 2015-02-13

Abstract

In order to explore a new process of intensified hydrolysis to solve the shortage of pretreatment. Fresh and dry corn stalk were used for batch anaerobic fermentation to study their hydrolysis characteristics with hydrolysis kinetic models under mesophilic conditions (35oC). The results demonstrated that hydrolysis kinetic models can’t effectively reveal the whole process of corn stalk, because of the disparity of hydrolysis rates in the process. There were two obvious inflection point on 2.75 d and 4 d of fresh and dry corn stalk in the hydrolysis process, respectively. The hydrolysis rate constant of fresh corn stalk was fast as much as 0.1004 d−1 before 2.75 d, and reduced to 0.0188 d−1 after that; the hydrolysis rate constant of dry corn stalk was 0.05658 d−1 and 0.02124 d−1, respectively. It would be a theory basis for theoretical reference intensified hydrolysis technology of corn stalk.

Cite this article

WANG Qing-jing , WANG Jia-lei , HE Wei , LI Dong , FENG Hong-yan , YAN Zhi-ying , LIAO Yin-zhang , LIU Xiao-feng . Kinetics of Substrate Hydrolysis for Anaerobic Digestion of Corn Stalk[J]. Advances in New and Renewable Energy, 2015 , 3(1) : 1 -6 . DOI: 10.3969/j.issn.2095-560X.2015.01.001

References

[1] Jiang D, Zhuang D F, Fu J Y, et al. Bioenergy potential from crop residues in China: Availability and distribution[J]. Renewable & Sustainable Energy Reviews, 2012, 16(3): 1377-1382.

[2] 韩鲁佳, 闰巧娟, 刘向阳, 等. 中国农作物秸秆资源及其利用现状[J]. 农业工程学, 2003, 18(3): 87-91.

[3] 黄如一, 何万宁, 唐和建, 等. 秸秆预处理产沼气对比试验[J]. 中国沼气, 2008, 26(4): 24-26.

[4] 乔江涛, 郭荣波, 袁宪正, 等. 玉米秸秆厌氧降解复合菌系的微生物群落结构[J]. 环境科学, 2013, 34(4): 1531-153.

[5] Vavilin V A, Rytov S V, Lokshina L Y. A description of hydrolysis kinetics in anaerobic degradation of particulate organic matter[J]. Bioresource Technology, 1996, 56: 229-237.

[6] 刘国涛, 彭绪亚, 龙腾锐, 等. 有机垃圾序批式厌氧消化水解动力学模型研究[J]. 环境科学学报, 2007, 27(7): 1227-1232.

[7] Valentini A, Garruti G, Rozzi A, et al. Anaerobic degradation kinetics of particulate organic matter: a new approach[J]. Water science and technology, 1997, 36(6/7): 239-246.

[8] 吴云, 张代钧, 杨钢. 餐厨垃圾厌氧消化水解机理及动力学模型研究[J]. 环境科学学报, 2010, 30(1): 142-147.

[9] Rotter B E, Barry D A, Gerhard J I, et al. Parameter and process significance in mechanistic modeling of cellulose hydrolysis[J]. Bioresource Technol, 2009, 99(13): 5738-5748.

[10] Zhou H D, Löffler D, Kranert M. Model-based predictions of anaerobic digestion of agricultural substrates for biogas production[J]. Bioresource Technology, 2011, 102(23): 10819-10828.

[11] Biernacki P, Steinigeweg S, Borchert A, et al. Application of Anaerobic Digestion Model No. 1 for describing anaerobic digestion of grass, maize, green weed silage, and industrial glycerine[J]. Bioresource Technology, 2013, 127: 188-194.

[12] Nelder J A, Mead R. A simple Method for Function Minimization[J]. Computer Journal, 1965, 7, 308-313.

[13] Hendriks A T W M, Zeeman G. Pretreatments to enhance the igestibility of lignocellulosic biomass[J]. Bioresource Technology, 2009, 100(1): 10-18.

[14] 赵律, 李志光, 李辉勇, 等. 木质纤维素预处理技术研究进展[J]. 化工与生物工程, 2007, 24(5), 5-8.

[15] 贺延龄. 废水的厌氧生物处理[M]. 北京: 中国轻工业出版社, 1998: 536-537.

Outlines

/