Welcome to visit Advances in New and Renewable Energy!

Review of Nano Si−Ge Thermoelectric Materials and Devices Research

  • LI Chao ,
  • MIAO Lei ,
  • LIU Cheng-yan ,
  • YANG Heng-quan ,
  • ZHOU Jian-hua
Expand
  • 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2014-05-07

  Revised date: 2014-10-13

  Online published: 2015-02-13

Abstract

 In recent years, a large number of nanotechnologies are performed to design and fabricate silicon germanium thermoelectric materials and novel devices. Band engineering and scattering mechanism theories have been taken account to theoretical design new Si−Ge nanostructures, including nanowires, superlattice and quantum dot structure, with decreasing thermal conductivity and increasing power factor. Experimentally, various Si−Ge nanostructures have been produced with improved thermoelectric performance such as nano-bulk, thin films, and nanowires. New-design thermoelectric devices not only focus on manufacture technology but also on heat transfer and novel structures.

Cite this article

LI Chao , MIAO Lei , LIU Cheng-yan , YANG Heng-quan , ZHOU Jian-hua . Review of Nano Si−Ge Thermoelectric Materials and Devices Research[J]. Advances in New and Renewable Energy, 2015 , 3(1) : 25 -32 . DOI: 10.3969/j.issn.2095-560X.2015.01.005

References

[1] Wheeler T, von Braun J. Climate change impacts on global food security[J]. Science, 2013, 341(6145): 508-513.

[2] Nolas G S, Sharp J, Goldsmid J. Thermoelectrics: basic principles and new materials developments[M]. Springer, 2001. 1-3.

[3] MacDonald D K C. Thermoelectricity: An Introduction to the Principles[M]. New York: Wiley, 1962.

[4] Riffat S B, Ma X. Thermoelectrics: a review of present and potential applications[J]. Applied Thermal Engineering, 2003, 23(8): 913-935.

[5] Rowe D M. Thermoelectrics, an environmentally friendly source of electrical power[J]. Renewable energy, 1999, 16(1): 1251-1256.

[6] 高敏, 张景韶, ROWE D M. 温差电转换及其应用[M]. 北京: 兵器工业出版社, 1996.

[7] Dresselhaus M S, Chen G. in Materials and Technologies for Direct Thermal-to-Electric Energy Conversion, MRS Symp.Proc. (Eds: J. Yang, T. P. Hogan, R. Funahashi, G. S. Nolas)[D]. Pittsburgh: Materials Research Society Press, 2005. 3-12

[8] Dresselhaus M S, Heremans J P. Thermoelectrics Handbook: Macro to Nano (Ed: D. M. Rowe)[M]. Taylor and Francis, 2006. 1-24.

[9] Dresselhaus M S, Chen G, Tang M Y, et al. New Directions for Low-Dimensional Thermoelectric Materials[J]. Advanced Materials, 2007, 19(8): 1043-1053.

[10] Venkatasubramanian R, Siivola E, Colpitts T, et al. Thin-film thermoelectric devices with high room-temperature figures of merit[J]. Nature, 2001, 413(6856): 597-602.

[11] Harman T C, Taylor P J, Walsh M P, et al. Quantum dot superlattice thermoelectric materials and devices[J]. Science, 2002, 297(5590): 2229-2232.

[12] Minnich A J, Dresselhaus M S, Ren Z F, et al. Bulk nanostructured thermoelectric materials: current research and future prospects[J]. Energy & Environmental Science, 2009, 2(5): 466-479.

[13] Balandin A, Wang K L. Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well[J]. Physical Review B, 1998, 58(3): 1544.

[14] Balandin A A. Nanophononics: Phonon engineering in nanostructures and nanodevices[J]. Journal of nanoscience and nanotechnology, 2005, 5(7): 1015-1022.

[15] Balandin A A, Nika D L. Phononics in low-dimensional materials[J]. Materials Today, 2012, 15(6): 266-275.

[16] Lee S M, Cahill D G, Venkatasubramanian R. Thermal conductivity of Si–Ge superlattices[J]. Applied physics letters, 1997, 70(22): 2957-2959.

[17] Borca-Tasciuc T, Liu W, Liu J, et al. Thermal conductivity of symmetrically strained Si/Ge superlattices[J]. Superlattices and Microstructures, 2000, 28(3): 199-206.

[18] Chen G, Neagu M. Thermal conductivity and heat transfer in superlattices[J]. Applied physics letters, 1997, 71(19): 2761-2763.

[19] Chen G. Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices[J]. Physical Review B, 1998, 57(23): 14958.

[20] Pokatilov E P, Nika D L, Balandin A A. A phonon depletion effect in ultrathin heterostructures with acoustically mismatched layers[J]. Applied physics letters, 2004, 85(5): 825-827.

[21] Aksamija Z, Knezevic I. Thermal conductivity of Si1−xGex/Si1−yGey superlattices: Competition between interfacial and internal scattering[J]. Physical Review B, 2013, 88(15): 155318.

[22] Zincenco N D, Nika D L, Pokatilov E P, et al. Acoustic phonon engineering of thermal properties of silicon-based nanostructures[C]. Journal of Physics: Conference Series. IOP Publishing, 2007, 92(1): 012086.

[23] Nika D L, Cocemasov A I, Crismari D V, et al. Thermal conductivity inhibition in phonon engineered core-shell cross-section modulated Si/Ge nanowires[J]. Applied Physics Letters, 2013, 102(21): 213109.

[24] Liu X J, Zhang G, Pei Q X, et al. Modulating the thermal conductivity of silicon nanowires via surface amorphization[J]. Science China Technological Sciences, 2014, 57(4): 699-705.

[25] Chen J, Zhang G, Li B. Phonon coherent resonance and its effect on thermal transport in core-shell nanowires[J]. The Journal of chemical physics, 2011, 135(10): 104508.

[26] Chen R, Hochbaum A I, Murphy P, et al. Thermal conductance of thin silicon nanowires[J]. Physical review letters, 2008, 101(10): 105501.

[27] Li D, Wu Y, Fan R, et al. Thermal conductivity of Si/SiGe superlattice nanowires[J]. Applied Physics Letters, 2003, 83(15): 3186-3188.

[28] Lin Y M, Dresselhaus M S. Thermoelectric properties of superlattice nanowires[J]. Physical review B, 2003, 68(7): 075304.

[29] Dames C, Chen G. Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires[J]. Journal of Applied Physics, 2003, 95(2): 682-693.

[30] Moon J, Kim J H, Chen Z C Y, et al. Gate-Modulated Thermoelectric Power Factor of Hole Gas in Ge–Si Core–Shell Nanowires[J]. Nano letters, 2013, 13(3): 1196-1202.

[31] Lee J H, Grossman J C. Thermoelectric properties of nanoporous Ge[J]. Applied Physics Letters, 2009, 95(1): 013106-013106-3.

[32] Hicks L D, Dresselhaus M S. Effect of quantum-well structures on the thermoelectric figure of merit[J]. Physical Review B, 1993, 47(19): 12727.

[33] Hicks L D, Harman T C, Sun X, et al. Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit[J]. Physical Review B, 1996, 53(16): R10493.

[34] Koga T, Sun X, Cronin S B, et al. Carrier pocket engineering applied to “strained” Si/Ge superlattices to design useful thermoelectric materials[J]. Applied Physics Letters, 1999, 75(16): 2438-2440.

[35] Koga T, Sun X, Cronin S B, et al. Carrier pocket engineering to design superior thermoelectric materials using GaAs/AlAs superlattices[J]. Applied Physics Letters, 1998, 73(20): 2950-2952.

[36] Bahk J H, Santhanam P, Bian Z, et al. Resonant carrier scattering by core-shell nanoparticles for thermoelectric power factor enhancement[J]. Applied Physics Letters, 2012, 100(1): 012102.

[37] Shi L, Yao D, Zhang G, et al. Large thermoelectric figure of merit in Si1−xGex nanowires[J]. Applied Physics Letters, 2010, 96(17): 173108-173108-3.

[38] Liu J L, Khitun A, Wang K L, et al. Growth of Ge quantum dot superlattices for thermoelectric applications[J]. Journal of crystal growth, 2001, 227: 1111-1115.

[39] Khitun A, Balandin A, Liu J L, et al. In-plane lattice thermal conductivity of a quantum-dot superlattice[J]. Journal of Applied Physics, 2000, 88(2): 696-699.

[40] Tsaousidou M, Triberis G P. Thermoelectric properties of a weakly coupled quantum dot: Enhanced thermoelectric efficiency[J]. Journal of Physics: Condensed Matter, 2010, 22(35): 355304.

[41] Liu Y S, Zhang D B, Yang X F, et al. The role of Coulomb interaction in thermoelectric effects of an Aharonov–Bohm interferometer[J]. Nanotechnology, 2011, 22(22): 225201.

[42] Gómez-Silva G, Avalos-Ovando O, de Guevara M L L, et al. Enhancement of thermoelectric efficiency and violation of the Wiedemann-Franz law due to Fano effect[J]. Journal of Applied Physics, 2012, 111(5): 053704.

[43] 高敏, 张景韶, 电学. 温差电转换及其应用[M]. 兵器工业出版社, 1996. 182-183.

[44] Cook B A, Beaudry B J, Harringa J L, et al. Thermoelectric properties of mechanically alloyed p-type Si80Ge20 alloys[C]//In Proceedings of the Eighth Symposium on SpaceNuclear Power Systems, M.S. EI-Genk and M.D. Hoover, eds., p. 431. American Institute of Physics Conference Proceedings, Part 1, New York, 1991.

[45] Harringa J L, Cook B A. Application of hot isostatic pressing for consolidation of n-type silicon–germanium alloys prepared by mechanical alloying[J]. Materials Science and Engineering: B, 1999, 60(2): 137-142.

[46] Cook B A, Harringa J L, Han S H, et al. Parasitic effects of oxygen on the thermoelectric properties of Si80Ge20 doped with GaP and P[J]. Journal of applied physics, 1992, 72(4): 1423-1428.

[47] Harringa J L, Cook B A. Application of hot isostatic pressing for consolidation of n-type silicon–germanium alloys prepared by mechanical alloying[J]. Materials Science and Engineering: B, 1999, 60(2): 137-142.

[48] Wang X W, Lee H, Lan Y C, et al. Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy[J]. Applied Physics Letters, 2008, 93(19): 193121-193121-3

[49] Joshi G, Lee H, Lan Y, et al. Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys[J]. Nano letters, 2008, 8(12): 4670-4674.

[50] Zhu G H, Lee H, Lan Y C, et al. Increased phonon scattering by nanograins and point defects in nanostructured silicon with a low concentration of germanium[J]. Physical review letters, 2009, 102(19): 196803.

[51] Yu B, Zebarjadi M, Wang H, et al. Enhancement of thermoelectric properties by modulation-doping in silicon germanium alloy nanocomposites[J]. Nano letters, 2012, 12(4): 2077-2082.

[52] Zebarjadi M, Joshi G, Zhu G, et al. Power factor enhancement by modulation doping in bulk nanocomposites[J]. Nano letters, 2011, 11(6): 2225-2230.

[53] Zamanipour Z, Shi X, Dehkordi A M, et al. The effect of synthesis parameters on transport properties of nanostructured bulk thermoelectric p-type silicon germanium alloy[J]. Physica Status Solidi A, 2012, 209(10): 2049-2058.

[54] Bathula S, Jayasimhadri M, Singh N, et al. Enhanced thermoelectric figure-of-merit in spark plasma sintered nanostructured n-type SiGe alloys[J]. Applied Physics Letters, 2012, 101(21): 213902.

[55] Harman T C, Taylor P J, Walsh M P, et al. Quantum dot superlattice thermoelectric materials and devices[J]. Science, 2002, 297(5590): 2229-2232.

[56] Cecchi S, Etzelstorfer T, Müller E, et al. Ge/SiGe Superlattices for Thermoelectric Devices Grown by Low-Energy Plasma-Enhanced Chemical Vapor Deposition[J]. Journal of electronic materials, 2013, 42(7): 2030-2034.

[57] Llin L F, Samarelli A, Cecchi S, et al. The cross-plane thermoelectric properties of p-Ge/Si0.5Ge0.5 superlattices[J]. Applied Physics Letters, 2013, 103(14): 143507.

[58] Samarelli A, Llin L F, Cecchi S, et al. The thermoelectric properties of Ge/SiGe modulation doped superlattices[J]. Journal of Applied Physics, 2013, 113(23): 233704.

[59] Stoib B, Langmann T, Petermann N, et al. Morphology, thermoelectric properties and wet-chemical doping of laser-sintered germanium nanoparticles[J]. physica status solidi (a), 2013, 210(1): 153-160.

[60] Stoib B, Langmann T, Matich S, et al. Laser-sintered thin films of doped SiGe nanoparticles[J]. Applied Physics Letters, 2012, 100(23): 231907.

[61] Chang H T, Wang C C, Hsu J C, et al. High quality multifold Ge/Si/Ge composite quantum dots for thermoelectric materials[J]. Applied Physics Letters, 2013, 102(10): 101902.

[62] Hochbaum A I, Chen R, Delgado R D, et al. Enhanced thermoelectric performance of rough silicon nanowires[J]. Nature, 2008, 451(7175): 163-167.

[63] Boukai A I, Bunimovich Y, Tahir-Kheli J, et al. Silicon nanowires as efficient thermoelectric materials[J]. Nature, 2008, 451(7175): 168-171.

[64] Caputo, R S, Truscello V C. Long life performance predictions of SiGe MHW-RTG multi hundred watt radioisotope thermoelectric generators[C]//8th Intersociety Energy Conversion Engineering Conference Proceedings, 197. 26-30.

[65] Bottner H. Thermoelectric micro devices: current state, recent developments and future aspects for technological progress and applications[C]//In Proceedings ICT’02: Twenty-First International Conference on Thermoelectrics. 2002: 511-518.

[66] Cronin S B, Dresselhaus M S, Harman T C, et al. Si/SiGe superlattice structures for use in thermoelectric devices[P]. U.S. Patent: 6,060,656. 2000-5-9.

[67] Paul D J, Samarelli A, Llin L F, et al. Si/SiGe Thermoelectric Generators[J]. ECS Transactions, 2013, 50(9): 959-963.

[68] Samarelli A, Lin L F, Zhang Y, et al. Power Factor Characterization of Ge/SiGe Thermoelectric Superlattices at 300K[J]. Journal of electronic materials, 2013, 42(7): 1449-1453.

[69] Strasser M, Aigner R, Lauterbach C, et al. Micromachined CMOS thermoelectric generators as on-chip power supply[J]. Sensors and Actuators A: Physical, 2004, 114(2): 362-370.

[70] Yang S M, Cong M, Lee T. Application of quantum well-like thermocouple to thermoelectric energy harvester by BiCMOS process[J]. Sensors and Actuators A: Physical, 2011, 166(1): 117-124.

[71] Huesgen T, Woias P, Kockmann N. Design and fabrication of MEMS thermoelectric generators with high temperature efficiency[J]. Sensors and Actuators A: Physical, 2008, 145: 423-429.

[72] Shi L, Li D, Yu C, et al. Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device[J]. Journal of heat transfer, 2003, 125(5): 881-888.

[73] Wingert M C, Chen Z C Y, Dechaumphai E, et al. Thermal Conductivity of Ge and Ge−Si Core−Shell Nanowires in the Phonon Confinement Regime[J]. Nano letters, 2011, 11(12): 5507-5513.

[74] Abramson A R, Kim W C, Huxtable S T, et al. Fabrication and characterization of a nanowire/polymer- based nanocomposite for a prototype thermoelectric device[J]. Journal of Microelectromechanical Systems, 2004, 13(3): 505-513.

[75] Goldberger J, Hochbaum A I, Fan R, et al. Silicon vertically integrated nanowire field effect transistors[J]. Nano letters, 2006, 6(5): 973-977.

[76] Leonov V, Torfs T, Fiorini P, et al. Thermoelectric converters of human warmth for self-powered wireless sensor nodes[J]. Sensors Journal, IEEE, 2007, 7(5): 650-657.

[77] Wang Z, Leonov V, Fiorini P, et al. Realization of a wearable miniaturized thermoelectric generator for human body applications[J]. Sensors and Actuators A: Physical, 2009, 156(1): 95-102.

[78] Whalen S A, Apblett C A, Aselage T L. Improving power density and efficiency of miniature radioisotopic thermoelectric generators[J]. Journal of Power Sources, 2008, 180(1): 657-663.

Outlines

/