Welcome to visit Advances in New and Renewable Energy!

Pyrolysis and Kinetics Analysis of Wheat Straw Enzymolysis Residue

  • LAI Xi-rui ,
  • HUANG Yan-qin ,
  • ZHOU Zhao-qiu ,
  • YIN Xiu-li ,
  • WU Chuang-zhi
Expand
  • 1. CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2014-11-29

  Revised date: 2015-01-15

  Online published: 2015-04-29

Abstract

The physicochemical characteristics of wheat straw and its enzymolysis residue were analyzed, and then the pyrolysis behavior of the residue was investigated with TG-FTIR. Kinetic parameters were calculated based on a mixed reaction model. Analyses illustrated that the wheat straw residue was a kind of low heating value biomass fuel which was rich in inorganic compounds, and the main organic component was lignin. TG curves showed most weight-losing of the residue occurred during the temperature range of 200oC ~ 800oC. The rate of weight-losing reached the maximum at 350oC. The pyrolysis process of the residue was similar to that of lignin and slower than that of wheat straw. It was also found that increase of heating rate resulted at higher reactivity and less remaining solid products. FTIR results showed that CH4 released during 400oC ~ 700oC, and releasing peaks of CO and CO2 occurred at temperature of 380oC, 450oC and 650oC. It was first order reaction at the lower temperature range of 200oC ~ 350oC and second order reaction at the higher range of 350oC ~ 800oC.

Cite this article

LAI Xi-rui , HUANG Yan-qin , ZHOU Zhao-qiu , YIN Xiu-li , WU Chuang-zhi . Pyrolysis and Kinetics Analysis of Wheat Straw Enzymolysis Residue[J]. Advances in New and Renewable Energy, 2015 , 3(2) : 88 -92 . DOI: 10.3969/j.issn.2095-560X.2015.02.002

References

[1] 杨利平, 蔡水文, 罗玲, 等. 生物乙醇生产及纤维素酶的开发进展[J]. 西部资源, 2012, (03): 132-134.

[2] Eriksson G, Kjellstrom B, Lundqvist B, et al. Combustion of wood hydrolysis residue in a 150 kW powder burner[J]. Fuel, 2004, 83(11/12): 1635-1641.

[3] Huang Y Q, Wei Z G, Yin X L. Pyrolytic characteristics of biomass acid hydrolysis residue rich in lignin[J]. Bioresource Technology, 2012, 103(1): 470-476.

[4] 黄艳琴, 魏志国, 阴秀丽. 玉米芯稀酸水解残渣热解特性[J]. 农业机械学报, 2012, 43(6): 86-91.

[5] 邱泽晶, 阴秀丽, 马隆龙, 等. 玉米芯酸水解残渣的热解特性[J]. 燃料化学学报, 2011, 39(9): 20-25.

[6] 魏志国. 玉米芯稀酸水解残渣热解气化利用研究[D]. 广州: 中科院广州能源所, 2011.

[7] 张斌. 木粉稀酸水解残渣及酸水解木质素的物理化学和热解特性研究[D]. 广州: 中科院广州能源所, 2009.

[8] 叶贻杰. 生物质灰特性及其结渣机理的研究[D]. 武汉: 华中科技大学, 2007.

[9] Du S, Yang H, Qian K, et al. Fusion and Transformation Properties of the Inorganic Components in Biomass Ash[J]. Fuel, 2014, 117(Part B): 1281-1287.

[10] Vtirhegyi G, Antal M J, Jakab E. Kinetic modeling of biomass pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 1997, 42(1): 73-87.

[11] Varhegyi G, Szdbo P, Antal M J. Kinetics of the thermal decomposition of cellulose under the experimental conditions of thermal analysis[J]. Theoretical extrapolations to high heating rates. Biomass Bioenergy, 1994, 7(1/6): 69-74.

[12] 王少光, 武书彬, 郭秀强, 等. 玉米秸秆木素的化学结构及热解特性[J]. 华南理工大学学报(自然科学版), 2006, 34(3): 43-46.

[13] 武书彬, 李梦实. 麦草酶解−温和酸解木质素的化学结构特性研究[J]. 林产化学与工业, 2006, 26(1): 108-112.

[14] 黄浩. 湿生物质定向气化制取高浓度氢气的实验研究及理论分析[D]. 上海: 上海交通大学, 2010.

[15] Fushimi C, Araki K, Yamaguchi Y, et al. Effect of heating rate on steam gasification of biomass 1, Reactivity of char[J]. Industrial & Engineering Chemistry Research. 2003, 42(17): 3922-3928.

[16] 黄娜, 高岱巍, 李建伟, 等. 生物质三组分热解反应及动力学的比较[J]. 北京化工大学学报(自然科学版), 2007, 34(5): 16-20.

[17] 李睿, 金保昇, 仲兆平, 等. 高斯多峰拟合用于生物质热解三组分模型的研究[J]. 太阳能学报, 2010, 31(7): 22-26.

[18] 王凯歌. 木质素热裂解行为的试验研究[D]. 浙江: 浙

江大学, 2010.

[19] 郑赟. 基于组分分析的生物质热裂解动力学机理研  究[D]. 浙江: 浙江大学, 2006.

Outlines

/